
Eurographics Symposium on Rendering 2015
J. Lehtinen and D. Nowrouzezahrai
(Guest Editors)

Volume 34 (2015), Number 4

Path-space Motion Estimation and Decomposition
for Robust Animation Filtering

SUPPLEMENTARY MATERIAL

Henning Zimmer1 Fabrice Rousselle1 Wenzel Jakob2 Oliver Wang1 David Adler3

Wojciech Jarosz1 Olga Sorkine-Hornung2 Alexander Sorkine-Hornung1

1Disney Research Zurich 2ETH Zurich 3Walt Disney Animation Studios

1 Introduction

This document complements our paper with additional tech-
nical details.

2 Decomposition

2.1 Classification of Light Paths

We define our decomposition using Heckbert’s [Hec90] light
path notation to classify light paths or families of similar
light paths. We label the first vertex on the camera sensor E
(“eye”), and denote the subsequent scattering vertices based
on a classification of the underlying materials. We use the
following notation:

(D) diffuse,
(R) specular (or glossy) reflection,
(T) specular (or glossy) transmission

We classify glossy light interactions (e.g. scattering off rough
metal or glass) as R or T if the roughness is below a threshold
(Beckmann roughness α < 0.1 in our experiments), otherwise
we consider them to be diffuse D.

Families of similar light transport paths can be expressed
using a regular expression syntax, e.g. ETT.* denotes ob-
jects seen through two transmission events, such as the in-
terfaces of a glass window. The “.” is a wild card, while
“*” indicates a chain of arbitrary length; “.*” is therefore an
arbitrary chain of arbitrary length. Similarly, “.+” is an arbi-
trary chain with at least one element, which can be used to
represent the indirect diffuse component, ED.+ (in contrast
with the direct diffuse component, ED).

2.2 Decomposition and Feature Extraction in Mitsuba

The decomposition and feature extraction is done in a single
pass using a modified implementation of the path tracer in-
tegrator of the Mitsuba renderer that employs a finite state

machine (FSM) to track the throughput of each component
as the paths are traced.

This general approach using a deterministic FSM is fairly
common in the movie industry and referred to as “light path
expressions” in products such as RenderMan, IRay or the
Open Shading Language. The key difference in our imple-
mentation is that we are interested in extracting many com-
ponents at the same time: for instance, after interacting with
coated diffuse material, subsequent interactions could con-
tribute both to the ED.* and ERD.* components of the out-
put image, which cannot be modeled using a deterministic
FSM. We address this by simulating all possible states of a
nondeterministic FSM at the same time – thus, the combined
system is still deterministic. Each state also stores a color
weight that is updated as paths are traced. Initially all are set
to zero, except for the initial state E whose weight is one.

Operations such as tracing a ray and sampling a BRDF
generate new symbols and importance sampling weights that
are sent to all states. Suppose that the FSM has a transition
from state E to ER given symbol R: when R is generated, the
color weight in state E is multiplied by the BRDF sampling
weight and moved to state ER. Unsupported transitions cause
weights to be moved to . In addition to a color weight,
each state is also associated with an output variable that will
eventually become a component of the final decomposition.
When a light source is sampled at a surface position, we
iterate over all FSM states and multiply the current weight
with the incident illumination and store the product into this
output variable.

3 Image-based Irradiance and Residual Flow

We use image-based optical flow to compute motion vectors
for the irradiance and residual components.

We base our approach on the variational optical flow
method of Brox et al. [BBPW04] which finds the motion

submitted to Eurographics Symposium on Rendering (2015)

2 H. Zimmer et al. / Path-space Motion Estimation and Decomposition for Robust Animation Filtering – SUPPLEMENTARY MATERIAL

vectors vt between frames at time t and t+1 by minimizing a
continuous energy formulation

E(vt) =
∫

Ω

D(vt)+λ S(∇vt) dp , (1)

consisting of a data term D, a smoothness term (regularizer)
S and a smoothness parameter λ. We set λ = 0.75 unless
otherwise noted.

The data term models the assumption of constant color
between corresponding pixels in frame It and It+1 via

D(vt) = m(p) ·Ψ
(
‖It+1(p+vt(p))− It(p)‖2

)
, (2)

where

Ψ(s2) =
√

s2 +0.0012 ≈ |s| (3)

is a robust penalizer function that reduces the influence of
outliers compared to a quadratic penalizer Ψ(s2)= s2, and
the function m is a binary mask that disables the data term at
occluded pixels; see Section 4.2 and Figure 7.

To reduce artifacts at image edges, we found a normaliza-
tion in the data term useful [ZBW11].

The smoothness term imposes smoothness of the resulting
flow field and is defined as

S(∇vt) = Ψ

(
‖∇vt(p)‖2

)
, (4)

using the same robust penalizer function Ψ as before to pre-
serve sharp discontinuities in the flow field.

Glossy materials. Moving glossy objects can create com-
plex caustics, as for example shown in the Glossy Sphere
scene in our supplementary video. To best capture the motion
of these caustic effects, we found it useful to reduce smooth-
ness weight of the optical flow formulation for the indirect
irradiance component that captures caustics. In the shown
results we set λ = 0.25.

4 Denoising Filter and Parameters

Before we give the parameters of our denoising algorithm, we
will first briefly define the equation for computing the weights
of the filter. Detailed explanations for these equations can be
found in the original work of Rousselle et al. [RMZ13].

The value û(p) of a pixel p is computed as a weighted
average over a square neighborhoodN (p) of side 2r+1 :

û(p) = ∑
q∈N (p)

w(p,q) u(q).

The weight w(p,q) is computed according to the data
contained in the color and feature buffers, w(p,q) =
min(wc(p,q),w f (p,q)), and wc and w f are the weights com-
puted using the color and features, respectively. If multiple
features are available (as in our case), then w f is the minimum
of the feature weights.

The color weight, wc, is an NL-Means [BCM05] weight,

that depends on the distance d2
c (P(p),P(q)) between square

patches P of side 2 f +1 centered on p and q:

d2
c (P(p),P(q)) =

1
3(2 f +1)2

3

∑
i=1

∑
n∈P(0)

∆
2
i (p+n,q+n),

where ∆i(p + n,q + n) is the pixel-wise distance in color
channel i and n ∈ P(0) is the offset to each pixel within a
patch. The pixel-wise distance is computed as

∆
2
i (p,q) =

(ui(p)−ui(q))2− (Vari[p]+Vari[q,p])
ε+ k2

c(Vari[p]+Vari[q])
,

where ui(p) and ui(q) are noisy pixel values, with variances
Vari[p] and Vari[q], Vari[q,p] = min(Vari[q],Vari[p]), and kc
is a parameter controlling the aggressiveness of the filter. The
color weight is then computed using an exponential kernel,

wc(p,q) = exp−max(0,d2
c (P(p),P(q))) .

The feature weight, w f , is a bilateral [TM98] weight, based
on the feature distance,

Φ
2(p,q) = (f (p)− f (q))2

max(τ2, ||∇ f [p]||2)
,

where k f is a parameter controlling the aggressiveness of the
filter, τ is the expected standard deviation of the feature, and
||∇ f [p]|| is the norm of the gradient of the feature at pixel
p. The feature weight is also computed using an exponential
kernel,

w f (p,q) = exp−max(0,Φ2(p,q)) .

Since the feature buffers are assumed to be noise free, we
denoise them in a preprocessing step using the NL-Means
filter as proposed by Rousselle et al.

In our application, we set the joint NL-Means filter param-
eters to: r = 5, f = 3, kc = 0.45, k f = 0.6, τ

2 = 0.001, and
extend the filtering window to cover the previous and next
frames in the sequence. When not using spatio-temporal fil-
tering, we set r = 10. The denoising of the feature buffers in
our preprocessing step uses the following parameters: r = 1,
f = 3, kc = 0.45.

5 Denoising Results at Lower Sampling Rates

We give denoising results on our Robot scene across a range
of sampling rates in Figure 1. While the denoised results
are significantly degraded at very low sampling rates, our
decomposition still allows for a reasonable preview of the
ground truth (bottom right image) at 16 samples per pixel.
Additionally, we provide an equal error rendering to our
denoised output at 512 samples per pixel (top right image).

References
[BBPW04] BROX T., BRUHN A., PAPENBERG N., WEICKERT

J.: High accuracy optical flow estimation based on a theory for
warping. In ECCV (2004), pp. 25–36. 1

submitted to Eurographics Symposium on Rendering (2015)

H. Zimmer et al. / Path-space Motion Estimation and Decomposition for Robust Animation Filtering – SUPPLEMENTARY MATERIAL 3

input (8 spp) input (32 spp) input (128 spp) input (512 spp) equal error (5.6k spp)

541·10−3 / 667·10−3 130·10−3 / 157·10−3 31·10−3 / 38·10−3 7.7·10−3 / 9.4·10−3 0.88·10−3 / 1.1·10−3

16·10−3 / 37·10−3 4.9·10−3 / 16·10−3 1.8·10−3 / 5.6·10−3 0.78·10−3 / 2.2·10−3 ground truth (16k spp)

Figure 1: Denoising results using 8 to 512 samples per pixels. We give the relative MSE of each image for the full frame (first
value) and the crop shown (second value). The reconstruction quality degrades as the sampling rate decreases, however, our
reconstruction offers a useful preview of the ground truth image even at 8 samples per pixel. The top right image shows a
rendering at 5.6k samples per pixel with a similar error overall to our denoised reconstruction at 512 samples per pixel.

[BCM05] BUADES A., COLL B., MOREL J.: A non-local algo-
rithm for image denoising. In CVPR (2005), pp. 60–65. 2

[Hec90] HECKBERT P. S.: Adaptive radiosity textures for bidirec-
tional ray tracing. In SIGGRAPH (1990), pp. 145–154. 1

[RMZ13] ROUSSELLE F., MANZI M., ZWICKER M.: Robust de-
noising using feature and color information. Computer Graphics
Forum 32, 7 (2013), 121–130. 2

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In ICCV (1998), pp. 839–846. 2

[ZBW11] ZIMMER H., BRUHN A., WEICKERT J.: Optic flow in
harmony. International Journal of Computer Vision 93, 3 (2011),
368–388. 2

submitted to Eurographics Symposium on Rendering (2015)

