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1 Additional results on volume-based reconstruction
We present additional results on the exponential volume reconstruc-
tion experiment (see Figure 12 in the main document).

1.1 Microflake volume optimization
The results presented in the main document show the outcome of
volume optimization after 200 iterations. Figure 1 further demon-
strates that after 500 optimization iterations, the microflake volume
successfully reproduces the surface appearance. The isotropic vol-
ume does not improve with more iterations.
Note that this is a purely volumetric reconstruction: The scene

must be rendered with volumetric path tracer that interacts with
phase functions instead of BRDFs, so a surface cannot be directly
extracted from this result.

1.2 SDF-parameterized microflake volume
In radiance field reconstruction, a common strategy to extract a
surface from a volume is to parameterize the volume using a signed
distance function (SDF) [Yariv et al. 2021;Wang et al. 2021; Miller et al.
2024]. To the best of our knowledge, no previous work has applied
this method to physically based rendering without approximations.
So we implemented this technique in Mitsuba 3 [Jakob et al. 2022]
to compare with our method.

Convergence. Consistent with prior work [Yariv et al. 2021; Wang
et al. 2021; Miller et al. 2024], we enforce the SDF property by
incorporating an Eikonal loss in the optimization objective:

L = Lrender +𝑤LEikonal, (1)

where𝑤 is the weight of the Eikonal loss.
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Fig. 1. Converged microflake volumes. We visualize the result after 500
iterations of optimization. An anisotropic microflake volume can mimic
surface appearance. Increasing the samples per pixel (spp) during training
slightly improves reconstruction quality at the expense of longer computa-
tion times.

Figure 2a shows that a higher Eikonal loss weight, while necessary
to enforce the SDF property, slows down optimization. In this scene,
a minimum weight of 0.01 is required to prevent divergence of the
Eikonal loss (see Figure 2b).
An SDF-parameterized volume recontruction is considered con-

verged when the standard deviation 𝜎 of its implicit function dis-
tribution becomes sufficiently small, effectively removing volume
particles outside the SDF surface. We observed this behavior in our
experiments (Figure 2c). Furthermore, Figure 2d visualizes how SDF
values are mapped to volume densities using the Gaussian implicit
function distribution (Equation (15) in Miller et al.’s work [2024]),
shown at the scale of our scene.

Finally, Figure 2e shows the optimization states of 500 iterations
with an Eikonal loss weight of 0.01, proving the convergence of this
method.

Surface extraction. While SDF-parameterized volume reconstruc-
tion achieves convergence, extracting a surface from the dense
volume necessitates an additional optimization step. Moreover, the
extracted surface often fails to align precisely with the original
volume, leading to a reduction in visual quality.

We demonstrate this with a simple scene in Figure 3. The cam-
era faces a thick microflake volume (with an extinction coefficient
of 1000) enclosed in a cube. Our objective is to extract a surface
BRDF, defined over the same cube, that reproduces the volume’s
appearance. For the surface BRDF, we use the GGX model [Wal-
ter et al. 2007], and for the volume’s phase function, we use the
SGGX microflake model [Heitz et al. 2015]. The SGGX matrix is
homogeneous across the volume and is isotropic with parameters
𝑆𝑥𝑥 = 0.01, 𝑆𝑦𝑦 = 0.01, 𝑆𝑧𝑧 = 1, 𝑆𝑥𝑦 = 0, 𝑆𝑥𝑧 = 0, 𝑆𝑦𝑧 = 0, where all
coefficients follow the definition of Equation (10) in Heitz et al.’s
work.

At first glance, the conversion might seem straightforward: the
dense volume ensures that rays interact at the same point as in
the surface case, and both microfacet and microflake models define
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Fig. 2. Optimization of SDF-parameterized microflake volumes.We evaluate surface reconstruction using a volume parameterized by an SDF with
an Eikonal constraint [Yariv et al. 2021; Wang et al. 2021]. (a) The image reconstruction loss over iterations reveals that stronger Eikonal regularization
slows convergence. (b) A minimal Eikonal loss weight of 0.01 is needed to prevent divergence of the Eikonal loss in our scene. (c) The volume sharpens over
time, as indicated by decreasing standard deviation 𝜎 of the implicit function [Miller et al. 2024]. (d) This sharpening is driven by the mapping from SDF
values to densities and concentrates volume density near the surface to better approximate the reference surface. (e) Despite converging after 500 iterations
with a stable Eikonal loss, the result remains inferior to our method in terms of surface quality and convergence speed. Overall, these results confirm that
SDF-parameterized volume optimization can recover surface geometry, but it is significantly less efficient in both convergence speed and final quality.
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their normal distributions (NDF) in a similar manner (the SGGX
distribution is a symmetric GGX distribution). However, as shown
in Figure 3b, the closest visual match occurs when the GGX rough-
ness parameter (alpha) is set to 0.2120 — and even then, the match
remains an approximation rather than an exact replication.
This mismatch is expected because the microfacet model is not

an exponential model. Simply increasing the density of a microflake
volume will not produce the same appearance of a microfacet sur-
face. Previous work [Dupuy et al. 2016] has investigated the link
between SGGX microflake models and GGX microfacet models,
showing that the two can become equivalent when a homogeneous
microflake volume is semi-infinite and the microflakes exhibit non-
symmetric behavior when interacted with from the backside. This
insight aligns with our observation that even with an additional
stage of optimization, a perfect match between the two models is
still unattainable.
In practice, the conversion is far more complex than this simple

example. The optimized microflake properties are often heteroge-
neous. Additionally, the geometric normal (determined by the vol-
ume density) may not align with the NDF normal (determined by the
microflake parameters), further complicating the conversion process.
Consequently, optimizing a PBR volume to reconstruct a surface
without approximations remains a difficult and open problem.

Speed. As shown in Figure 4, the computational cost per iteration
is one order of magnitude higher than that of our approach, primarily
because our method is surface-based and does not model shadowing
or multiple scattering. The additional Eikonal loss also makes SDF-
parameterized volume optimization slower than standard volume
optimization.
Physically based rendering requires sampling entire light paths

between sensors and emitters, a challenging task that makes volume-
based methods inherently slower than surface-based ones. Two key
factors contribute to this increased computational time:

• Multiple interactions: A light path interacts with the volume at
several points. We need to sample these interaction positions
in proportion to either the transmittance [Nimier-David et al.
2022] or the extinction-weighted transmittance.

• Iterative computation: As illustrated in Figure 5, connecting
a shading point to a light source (for example, during next
event estimation) requires only one shadow ray test in surface-
based methods. In contrast, volume-based methods must also
estimate the transmittance along the shadow ray using ratio
tracking [Novák et al. 2014].

Together, these challenges make volume optimization significantly
slower than surface optimization.
In radiance surface reconstruction (like NeuS [Wang et al. 2021]),

we render a pixel by estimating a line integral along the camera
ray through point sampling. The SDF parameterization enables
efficient point sampling strategies — such as concentrating more
samples near the SDF surface [Oechsle et al. 2021] — but it does not
straightforwardly provide an easier solution to the aforementioned
challenges in physical light transport.

Summary. Based on our experiments, we draw the following
conclusions:
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Fig. 3. Extracting BRDFs from a simple volume. (a) In a scene with an
extremely dense microflake volume characterized by a spatially homoge-
neous phase function, our goal is to derive a surface BRDF that mimics the
same appearance. (b) This task introduces a new optimization step since
there is no analytical solution for the conversion. Furthermore, even in this
trivial case, the conversion cannot exactly preserve the appearance of the
original volume.

(1) Surface Appearance: SDF-parameterized microflake volumes
can effectively mimic target surface appearances.

(2) Surface Extraction: Converting optimized volumes into sur-
faces with BRDFs remains an open challenge. Unlike radiance
field reconstruction, where material properties and interreflec-
tion are absorbed into a radiance storage, the PBR problem
requires a dedicated optimization step to extract a surface, and
even then, the result is an approximation rather than an exact
match.

(3) Computational Efficiency: Volumetric reconstruction is sig-
nificantly slower than our method. In particular, the SDF pa-
rameterization does not alleviate the inherent computational
costs of volume rendering.
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Fig. 4. Average per-iteration computational cost.Our approach achieves
a 21.2× speedup in per-iteration computational cost compared to SDF-
parameterized volume optimization. This comparison is based on identical
hyperparameters (image resolution, samples per pixel) and both methods
use the same texture storage in Mitsuba 3 [Jakob et al. 2022]. The reported
times include all overheads, such as the primal rendering pass.
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Fig. 5. Computational disparity between volume and surface render-
ing. To connect a shading point to a light source (e.g., next event estimation),
a surface renderer only requires one shadow ray test, while a volume ren-
derer additionally need to estimate transmittance along the shadow ray. In a
heterogeneous volume, this requires a costly iterative algorithm to estimate.
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