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Fig. 1. All materials in this rendering of an interior scene were generated using the techniques proposed in this article. Insets on the left side reveal the
corresponding layer structures, which make use of dielectric and conductive microfacet models, scattering and absorbing volumes, and measured materials

acquired using dense gonio-photometric measurements.

We present a versatile computational framework for modeling the reflective
and transmissive properties of arbitrarily layered anisotropic material struc-
tures. Given a set of input layers, our model synthesizes an effective BSDF
of the entire structure, which accounts for all orders of internal scattering
and is efficient to sample and evaluate in modern rendering systems.

Our technique builds on the insight that reflectance data is sparse when
expanded into a suitable frequency-space representation, and that this prop-
erty extends to the class of anisotropic materials. This sparsity enables an
efficient matrix calculus that admits the entire space of BSDFs and consid-
erably expands the scope of prior work on layered material modeling. We
show how both measured data and the popular class of microfacet models
can be expressed in our representation, and how the presence of anisotropy
leads to a weak coupling between Fourier orders in frequency space.

In addition to additive composition, our models supports subtractive
composition, a fascinating new operation that reconstructs the BSDF of a
material that can only be observed indirectly through another layer with
known reflectance properties. The operation produces a new BSDF of the
desired layer as if measured in isolation. Subtractive composition can be
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interpreted as a type of deconvolution that removes both internal scattering
and blurring due to transmission through the known layer.

We experimentally demonstrate the accuracy and scope of our model and
validate both additive and subtractive composition using measurements of
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1 INTRODUCTION

Photorealistic images created using computer simulations have be-
come an integral part of our society: humans are fundamentally
visual creatures, hence almost any creative process requires our abil-
ity to reason about the visual nature of objects or materials that are
yet to be created. Given a detailed description of materials, shapes,
and their environment, physically-based rendering algorithms can
produce images that are indistinguishable from photographs of man-
ufactured objects subject to the same specifications, and they have
therefore become the tool of choice for applications that require
such predictive capabilities.

High-quality material models are a crucial ingredient in this
pursuit of realism: they encode the precise spatial and directional
displacement of light following a scattering interaction, allowing
an object to be visualized in an arbitrary simulated environment.
Modern rendering systems typically ship with a large catalog of
standard parametric models that reproduce specific phenomena re-
quired by a given scene. Although tremendous advances over the
last decades have produced models that are in excellent agreement
with measured data, they are almost always limited to basic physical
phenomena observed in isolation, e.g. reflection by surfaces with
microscopic imperfections, refraction due to index of refraction
changes, diffraction by thin films, etc. This is a serious impediment,
as most real-world materials exhibit behaviors that are significantly
more complex than these idealized models, involving multiple dif-
ferent types of interactions along with internal scattering and a
nonlinear dependence on the internal material composition.

In this article, we focus on the class of layered materials, which
are composed of a stack of layers that can each be clear or subject to
internal scattering and/or absorption. Each pair of adjacent layers is
separated by a smooth or rough interface representing an optional
index of refraction change. Classic examples of layered materials
include any type of painted or glazed surface (ceramic tiles, car
paint, finished wood, paint on primer, etc.), dielectric slabs with
two interfaces (e.g. frosted glass panels), potentially with significant
internal scattering (e.g. most types of plastics), and organic materi-
als such as leaves or skin. Layered material models are appealing
because each new type of layer or interface fuels a combinatorial
explosion that greatly expands the space of material models that
are available for use in a physically-based renderer. Thinking in
terms of layers also creates a helpful connection between material
appearance and composition that is absent in models that merely
attempt to fit or interpolate reflectance data.

Previous works on layered materials have proposed heuristic
approximations [Weidlich and Wilkie 2007] and numerical methods
for special cases, such as human skin [Stam 2001] and the class
of isotropic materials [Jakob et al. 2014]. The latter work is the
most accurate and general approach to date, but the restriction
to isotropy constitutes a significant limitation. Virtually all types
of industrial manufacturing processes—sawing, milling, turning,
drawing, honing, grinding, etc.—involve some type of tool or mask
that interacts with the material in a directional sense, producing a
rich spectrum of subtle to extreme anisotropic surface appearance.
Anisotropy is thus the norm and not the exception, which motivates
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our technique: we want to extend the layered material framework
so that it can represent and transform the entire space of BSDFs.

Our approach heavily relies on a directional Fourier basis, whose
convenient numerical properties enable efficient layering compu-
tations for material parameters ranging from mild to pronounced
anisotropy. A key aspect of our representation is that anisotropy
gives rise to a sparse coefficient structure, which allows for efficient
matrix computations involving banded block matrices, typically
containing 0.01 — 0.5% nonzero entries.

A crucial aspect of prior work [Jakob et al. 2014] was that the
Fourier treatment caused the azimuthal and latitudinal dimensions
to separate into independent lower-dimensional sub-problems, which
made the layering computations tractable. In the anisotropic case,
we find that this separation no longer takes place—instead, the sub-
problems are coupled and must be solved jointly. Fortunately, this
coupling is weak in the low frequency sense, which we exploit to
create a stable and efficient numerical solver for arbitrary layered
structures.

Our matrix representation admits additive composition via the
well-known adding equations, a highly nonlinear process that com-
putes the aggregate properties of a layer (or layered structure) ob-
served through another layer (or layered structure), while account-
ing for arbitrary orders of inter-reflection.

However, our representation is not just useful for combining
layers: it can also be used to solve a variety of interesting inverse
problems using algebraic transformations. We introduce the sub-
tracting equations, which remove either the top or bottom of an
arbitrarily layered structure, revealing the layers underneath. Being
the inverse of the adding equations, subtractive layer composition
must undo the transmissive effects (e.g. directional blur) of the re-
moved layer, while also removing complex nonlinearities due to
multiple scattering. Naturally, this is only feasible when enough
information is available: a specular material below an opaque or
diffuse transmissive layer cannot be reconstructed. Like any type
of deconvolution, subtractive composition is a challenging inverse
problem that requires regularization to ensure robustness to noise.
We believe that subtractive composition could be an asset in situ-
ations where an individual layer is hard or impossible to observe
directly, e.g. when attempting to measure a single interface of a
refractive material that also has a back surface. Other interesting
application areas are reverse engineering of materials and cultural
heritage preservation, where the desired removal of a layer (e.g.
lacquer) may be destructive to an artifact.

Our contributions are as follows:

e We propose a directional representation that enables layered
composition of anisotropic materials.

o We derive two types of subtracting equations, which consti-
tute an inverse of the adding equations.

o We show how to project the popular class of microfacet mod-
els into this representation and discuss practical considera-
tions to improve efficiency and robustness.

o We validate additive and subtractive composition using Monte
Carlo simulations and dense ground-truth measurements
of real-world layered materials performed using a gonio-
photometer.
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2 PRIOR WORK

Blinn [1982] and Hanrahan and Krueger [1993] introduced the first
layered material models to computer graphics; their BRDFs account
for a single scattering event in a homogeneous medium, the lat-
ter potentially involving several layers with different scattering
properties and indices of refractions.

A number of BRDF models combine diffuse and specular terms
to approximate the optics of a single dielectric layer with multiple
internal scattering, an important special case that is representative
of extremely common material types including plastics and ceramics.
Examples include the classic Phong [1975], Blinn-Phong [1977], and
Ward [1992] BRDFs as well as later works by Shirley [1997] and
Kelemen [2001] that consider the effects of the dielectric interface
to distribute energy between the specular and diffuse portions.

Beckmann and Spizzichino [1963] introduced the idea of modeling
scattering due to microscopic surface imperfections by represent-
ing the surface as a random process with Gaussian autocorrelation.
Building on this work, Torrance, Sparrow, and Cook [1982; 1967]
introduced microfacet BRDFs, which model the surface as a com-
plex specular reflector with shadowing and masking. An extension
by Walter et al. [2007] made this approach compatible with the
refractive case. Due to their simplicity and good agreement with
real materials, microfacet models have become the predominant
way of representing roughness at layer boundaries. One limitation
is their builtin assumption that light will scatter at most once at
the interface, which ceases to be the case as the surface roughness
increases. Heitz et al. [2016] recently proposed a volumetric general-
ization of microfacet theory that addresses this flaw. Dai et al. [2009]
proposed a specialized layered model for a two-sided dielectric with
rough microfacet boundaries. Burley’s Disney BRDF [2012] has be-
come a popular microfacet variant due to its artist-friendly controls
and ability to smoothly interpolate between diffuse and specular as
well as reflective and transmissive conditions. The model supports
an optional coating layer but does not account for interreflection
between the coating and substrate.

Structures with layer thicknesses on the order of the wavelength
of light are subject to wave-optical interference, which causes a
strong coupling between the wavelength, intensity, and direction of
scattered light. This mechanism is exploited in anti-reflection coat-
ings for optical elements, dichroic filters for microscopy and effect
coatings for architectural applications. BRDF models for multi-layer
iridescence include the works of Hirayama [2001], Icart [2000] and
Ershov [2001]. The tools developed in this article target macroscopic
layers, whose behavior can be described using geometric optics. Un-
correlated iridescence effects that are local to each layer could be
incorporated using an extension to microfacet models proposed by
Belcour and Barla [2017].

BRDF models for macroscopic layered structures were proposed
by Stam [2001] for the special case of human skin and Weidlich
and Wilkie [2007] for arbitrarily layered surfaces. Their model can
in principle support anisotropy but does not account for multiple
internal scattering. The layering framework by Jakob et al. [2014]
is closest to the methods described in this article but is restricted
to isotropy. We considerably extend their framework to robustly

support anisotropy at moderate additional cost and perform com-
prehensive validations against real-world measurements of layered
structures.

We are not aware of any works that have attempted to reconstruct
the full BRDF of an indirectly observed material. Most closely related
are techniques that use special sensing modalities such as time-
of-flight cameras to classify BRDFS [Su et al. 2016] or fit simple
parametric models [Naik et al. 2011]. Tanaka et al. [2015] extract the
spatially varying albedo of a layered structure using high-frequency
projector illumination.

3 ANISOTROPIC LAYER CALCULUS

This section introduces our layering calculus for anisotropic mate-
rials, starting with the frequency-space representation that lies at
its foundation. We also discuss relevant background material and
point out differences to prior work where applicable.

3.1 Representation of radiance

We denote the radiance in a layered structure as ®(y, ¢), where
1 = cos 0 € [—1,1] is the cosine of the elevation angle and ¢ is the
azimuth measured in the layer’s tangent frame. Although regular
spherical coordinates could also be used, we prefer this formulation
as it simplifies some of the subsequent expressions and numerical
computations.

We discretize radiance using a representation originally proposed
by Chandrasekhar [1960], which is particularly well-suited for lay-
ering computations that must evaluate large quantities of numer-
ical integrals. It samples ® at a fixed number of elevation cosines
U1, ..., {n that are chosen based on the resolution requirements of
the material under consideration. Instead of placing the elevation
samples uniformly, Chandrasekhar uses a numerical quadrature
scheme, i.e. integration nodes {y1,...,un} € [-1,1] \ {0} and
weights {w1, ..., wn} so that integrals over elevations angles are
easily approximated as

T 1 n
[ r@snoao= [ pwdn=Y werm. @
0 -1 k=1

Similar to prior work [Jakob et al. 2014], we use a Gauss-Lobatto
quadrature rule, which maximizes the order of exactly integrable
polynomials subject to the constraint of including the endpoints (i.e.
p1=-land p, =1).

Rather than discretizing azimuths at a similar set of discrete posi-
tions, they must be projected into frequency space: this is key to the
efficiency of the method, as will be seen later. Both Chandrasekhar
and Jakob et al. expand the azimuthal dependence of the radiance
function into a Fourier series containing only the even cosine terms:

O(ui §) = ) @) cos(ig).

I=1

This is possible in their case due to the restriction to isotropic ma-
terials: scattered light is symmetric around the incident azimuth
causing odd Fourier terms to vanish. However, this property no
longer holds when working with anisotropic layers.
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Table 1. Overview of used notation

Term Meaning

D(u, P) Continuous radiance function

0i,00 Incident and outgoing elevation angle

Ui, flo Incident and outgoing elevation angle cosine
di. o Incident and outgoing azimuth angle

¢s = ¢o + ¢i  Azimuthal sum

¢d = ¢o — ¢; Azimuthal difference

n Number of discretizations in g

ms Number of Fourier coefficients in ¢

my Number of Fourier coefficients in ¢4

i, j Kronecker delta

oy, oy Anisotropic Beckmann roughness in u and v
f Surface BSDF of a layer

@;(p) Fourier expansion of ®

D p-discretization of ®; (R™)

fs.a(pis> o) 2D Fourier expansion of f

Fs 4 p-discretization of fy 4 (R™")

Isotropic layer Anisotropic layer

In contrast, our method represents this non-symmetry using a com-
plex exponential series of the form

®(pis$) = ) @1(pus) exp(ilg), )

leZ

which is somewhat redundant given that ® is always real-valued (in
particular, ®; = ®_;). This symmetry can be exploited by the imple-
mentation to reduce storage and computation overheads roughly
by half. By convention, light traveling along a ray with 4 > 0 is
considered to propagate deeper into the layered structure, while
directions with p < 0 correspond to light traveling towards the top
surface.

3.2 Representation of Layers

We partition the incident radiance ®* at a given layer into directions
that are incident at the top (¢ > 0) and bottom (1 < 0) surfaces.
Scattered radiance ®° uses the same convention, i.e. light leaving
the bottom surface satisfies y > 0. Due to linearity, the effect of a
single layer on light arriving on both sides can then be expressed
via the following integral equation

2w pl .
(o bo) = /0 / ) £t oo o) sl 8 9

where f characterizes the flow of energy. What constitutes a layer
is intentionally broad: it could be a volume with internal scattering
or a single smooth or rough surface separating two regions of space
with different indices or refraction. In the case of a surface layer, f is
the well-known bidirectional scattering distribution function (BSDF).
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The four-dimensional nature of f leads to a number of practi-
cal challenges: dense discretizations in (y;, @, fio, ¢o) are typically
needed to represent arbitrary layers accurately, but this leads to
impracticably high storage requirements. The 4D space can also be
re-parameterized using alternative coordinates with superior prop-
erties, allowing for coarser discretizations, e.g. using the half-vector
mapping of Rusinkiewicz [1998]. The downside of such warped
representations is that they impede efficient evaluation of integrals
over (i, ¢i), a crucial operation in layered material models.

In the isotropic case, the optical behavior of the layer is invariant
under rotation around the surface normal, and f therefore simplifies
to a three-dimensional function f(u;, i, ¢4) involving the azimuth
difference ¢4 = ¢ —Po. Prior work takes advantage of this property
by expanding f into a Fourier basis in ¢, i.e.

Fpistos§a) = D, filhis o) cos(la). 4)
1=0

and inserting the expansion into (3). This step leads to a remarkable
simplification: the two-dimensional illumination integral decouples
into an infinite series of simpler one-dimensional integrals that only
make reference to elevation angles.

1 .
30) = 1+ éup) [ 00 i i) . (=0, 9

Each equation characterizes the material’s response to a particular
oscillation mode in azimuth. We refer to Jakob et al. [2014] for details
on this derivation.

In the anisotropic setting, the difference angle ¢4 no longer fully
characterizes the azimuthal behavior of a layer, hence a different set
of parameters is needed. Instead of reverting to the original incident
and outgoing azimuth values, we found it preferable to retain the
difference angle and complete it to an orthogonal basis, i.e.:

Ba = ¢o — Pis  Ps = go + i, 6)
Hi, 471' ;10,([)0 Mi s (Pd Mo

L7 \y Lo

where ¢; is the sum of azimuths. Holding ¢4 constant and changing
¢s by & radians is equivalent to rotating the layer by §/2 radians
around the surface normal. For each incident and outgoing elevation,
the anisotropic frequency-space representation of f now turns into
a two-dimensional array of Fourier coefficients

Flhis$is tor$o) = D fus(pis o) €4 @om0) ¢l s (Botdi) = (7)
d,s€Z

It is instructive to consider behavior of a microfacet model in this pa-
rameterization. In the case of an isotropic material with roughness
parameter a, the difference coordinate ¢ suffices to fully charac-
terize the dependence on azimuth. Generalizing to an anisotropic
material (¢, = ¢ - @) for some constant ¢ > 1 introduces blur,
which cannot increase the frequency content in ¢;. The sum co-
ordinate ¢ is now needed to account for anisotropy: it describes
how the (formerly isotropic) Fourier coefficients must update as
the material rotates about the surface normal. Figure 2 visualizes
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Fig. 2. Frequency-space response of an conductive layer with anisotropic
Beckmann roughness a = (0.05, 0.3). Top row. Four BRDF slices for
0; = 30° visualized on the projected unit disk. Three outgoing directions are
highlighted, and the bold black line denotes rotation around the surface nor-
mal. Middle row. Matching BRDF plots in the (fs, ¢4) parameterization.
Bottom row. Fourier transform of the above row. The Fourier coefficients
are sparse and quickly decay when moving away from a central band. For
most configurations, the high-frequency behavior is predominantly con-
strained to the ¢4 parameter.

the low-frequency behaviour of ¢s—it causes a slight widening and
shift of the lobe, requiring comparatively few coefficients.
Another important observation is that the Fourier coefficients
rapidly decay when moving away from a central band that is cen-
tered around zero—they are sparse in the (d, s)-domain. Our imple-
mentation exploits this property to accelerate layering computations.

Surface illumination integral. Having decided on a basis, we must
now project the surface illumination integral onto this represen-
tation to derive a linear operator that encapsulates the optics of a
single layer. Let

7ilgO) = 5 [ o)e % dg

denote the [-th complex Fourier coefficient of a 27-periodic func-
tion g. Transforming both sides of Equation 3 and reversing the
order of integration yields

1 2r
050 = [ 71| [ 080 F o) | il .

Neglecting the p-dependence for readability, the Fourier integral in
the above expression then simplifies to

. T 2w
2i Sl g, / el¢g(s+d*1)/ eiilkrs=d) g5 4
T T 0

k,d,s€Z
. s . .
= 3 Ghferss [ POy —2x Y B fiogs ®
k,s€Z i SEZ

and the final set of equations thus reads

1
¥00) =2 Y @ () i) il s (1€2) )
“lsez

These equations reveal a surprising structure that was absent in
the isotropic case: the I-th Fourier mode of the scattered radiance is
now coupled to modes [ + 0, 2,4, 6, ... of the incident radiance. At
first, this appears to be a fundamental problem: the independence
of each Fourier mode and resulting dimensionality reduction were
both crucial factors in making the isotropic layering model of Jakob
et al. computationally feasible.

Fortunately, only a small number of adjacent modes must be
considered in practice—the frequency-space coupling is weak. This
is a consequence of the rapid decay of Fourier coefficients in the
azimuth sum parameter ¢ observed in Figure 2. Figure 3 shows
the visual effect of using an increasing numbers of coupling coeffi-
cients s € [-myg, ..., ms] in a rendering of an anisotropic conduc-
tive surface. A similar parameter d € [-my, ..., mg] determines
the number of coefficients used to model the dependence on ¢;.

Finally, we apply the quadrature rule (1) to Equation 9 and rewrite
the resulting expression using matrix-vector products:

ms
=21 ) Fl M@, (I=-mg,....,mg) (10)
s=—mg

Here, @] and @] are n-dimensional vectors tabulating the incident
and outgoing radiance over elevation cosines for a given Fourier
mode, Fy ¢ is an nXn matrix containing the (d,s) Fourier coefficients
of f,and M = J;; w; |;| is a diagonal matrix containing quadrature

weights and cosine foreshortening factors.
The equations in (10) specify the scattered radiance for a single
frequency due to incident radiance along neighboring frequencies.
We now group all of these equations into a single matrix S that

(d)yms =1

(e)ms =4

Fig. 3. Left to right. The effect of increasing the number of coefficients mg
used to represent the coupling between Fourier modes due to anisotropy,
visualized using a conductive layer. Top row. Moderate anisotropy, a =
(0.1, 0.2), Bottom row. Pronounced anisotropy, a = (0.05, 0.4). The last
column matches the corresponding analytic references.
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determines the scattered radiance for all frequencies at once. In
the most general anisotropic case, it has a banded block structure
visualized below (ms = 2,my = 5). Typically, mg < my, and the
matrix is thus mostly empty.

° S P!

The individual blocks capture the dependence on (y;, pio): they have
size n X n and can themselves be sparse. For isotropic materials, mg
is zero, and the matrix thus becomes block diagonal. This matches
the isotropic model by Jakob et al. [2014] where Fourier modes fully
decouple. Simplifying even further, we can represent a diffuse BSDF
with only a single non-zero block (ms = mg = 0). Once converted
to a scattering matrix, our method is oblivious to the original layer
properties treats all types of materials the same. That said, our im-
plementation automatically exploits the potentially simpler sparsity
structure during layering computations.

Finally, we rearrange the contents of this linear system into four
quadrants representing reflection at the top (R?) and bottom surfaces
(R?) as well as transmission from the top to bottom (T* by and vice
versa (T?!); this partition allows for succinct definition of the adding
and subtracting equations.

Tbl‘ Rt

Rb Ttb

3.3 The Adding Equations

Given the above partitioned linear operator representation of a
layer, the adding-equations provide a natural way of determining
the compound scattering of two vertically stacked layers. Consider
the reflection from the top surface of such a structure: light is either
directly reflected from the top layer, or it transmits into the second
layer, undergoes an arbitrary number of inter-reflections before
leaving via another transmission.

b b
e PP
\ R R, R,

\ |

The reflection matrix R? of the layer stack can thus be written as a
power series over all possible paths types

R =R+ TV [Z(RQR{’)"]RQT{”,
k=0
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which involves matrices of the top (RZ, Rll’ , ...) and bottom (R;)

layers. Transforming the power series into closed form yields the
well-known adding equations [Grant and Hunt 1969]:

-1
nt _ pt bt tpb tth
RO =RE+TY (1-RIRY) RITY

-1
Rb b tb bpt brbt
RP =R} + T (1-RURS)  RITS -
~ -1
tb tb bpt tb
T =Ty (1-RIRY) T

-1
Tbt bt tpb bt
T =T (1-RIRY) T

Rather than computing the matrix inverses (I-R! Rj? )~!B explicitly,
we precompute sparse LU factorisations using UMFPACK [Davis
2004] to solve a sequence of linear systems—one for each column
of the matrix term B on the right. Unfortunately, most existing
solvers for sparse linear systems of the type Ax = b (including
Eigen, UMFPack, SuperLU) assume that x and b are small enough to
be represented as dense coefficient vectors. In our case, this means
that the entire scattering matrix must temporarily be converted
to a dense representation, creating a severe performance bottle-
neck. We avoid this issue using custom sparse-sparse forward and
backward substitution steps—these are identical to standard LU for-
ward/backward substitution except that they skip over zero-valued
entries in both L and U terms as well as the coefficient vector.

As an additional optimization, we apply the matrix inverse iden-
tity (I + PQ)~!P = P(I + QP)~! to the first two equations:

- -1

R® =R{+TU'R (1-RIRS) TI
i - (12)
RP =R+ TERY (1-RERY) T4,

The inverse terms now match the bottom two equations of Equa-
tion 11 and must only be computed once, reducing linear system
solving costs by a factor of 2.

3.4 The Subtracting Equations

Applications of our layer calculus extend beyond the mere use of
the adding equations: using algebraic manipulations, we can solve
a variety of interesting inverse problems involving layers. Here, we
introduce the subtracting equations, which remove either the top
or bottom of an arbitrarily layered structure, revealing the layers
underneath.

(f{’, f{b,Ttb,Tb") (Ré,Rh,T;b, Tgt)

— \ =
i | | %

For instance, consider the problem of determining the reflection
from the top surface of a layer Ré observed indirectly through an-

(R Ry, T, T)

other layer, resulting in a scattering matrix R? that is contaminated
by the transmissive effects of the in-between layer as well as mul-
tiple scattering. Assuming that properties of the top layer (Ri, Ri’,
Tll’ ! and T{b ) are fully known, we can rearrange the terms of the

first equation of (11) and multiply by (Tiy t)_l and (Tib)_1 from the



The Layer Laboratory: A Calculus for Additive and Subtractive Composition of Anisotropic Surface Reflectance + 74:7

left and right, which yields
-1 -1 -1
b D b b
() (R -Re)(T8) = (1-RERE) RS (1)
Let X denote the left hand side of Equation 13, i.e.
A 5L pt AN
X = (T¢) (R' -R!)(TIP) .
Multiplying (13) by (I - RER{’ ) and expanding produces
X -RIRPX =R/,
which has the solution
Rl =X (I + RbX)_l (14)
2 = 1 :
The remaining removing equations read
. -1
T4 =T (1i?) 7 (1- RIRY)
-1.
T2 = (I—RgRlb) (T{”) Tt (15)
. -1
RY =R -TiP (1-RIRY) ROTY
An alternative set of equations removes the bottom layer instead:
-1 -1
o tbh 4 b bt
Y= () (RY -RY)(TE)
R =Y (1+Rly)™
-1.
TIP = (1-RIRE) (T5) T (16)
. -1
T =T (18) (1-RIRY)
. -1
R =R -TV (1-RRY)  ROTEY

Similar to other problems that resemble deconvolution, the inverse
terms have high condition numbers and exhibit oscillatory behavior
that requires an appropriate regularization strategy to avoid mag-
nifying small measurement errors. Figure 4 visualizes an inverse
transmission matrix (Tib)_1 computed for a dielectric microfacet
model. Note the large-valued positive and negative bands centered
around the specular peak.

4 PROJECTING ANALYTIC AND MEASURED BSDFS

We now discuss the conversion of existing BRDF models into our
frequency-space representation, which entails finding 2D Fourier
expansion coefficients f; ¢ of the form

fa,s(pis o) = Fa sUf (i, $i(Ba $5). pos do(Ba $5))] (17)
= #/_ '/_. f(lli»%(%—¢d),,uo,%(¢s+¢d)) e_id¢d_i5¢s dpsdg,.

Our system currently supports reflective and transmissive BSDF
measurements as well as dielectric and conductive microfacet BSDFs
using the anisotropic Beckmann normal distribution function. ?

In principle, other microfacet distributions (such as GGX) are also supported by
treating them like measured data.

90°

70000

[
X 180° &
(on back side)

—34000

270°

Fig. 4. Visualization of an inverse transmission scattering matrix (Tlﬂ’)’l
that occurs as part of the subtracting equation (14). These terms are highly
oscillatory and require an appropriate regularization strategy to avoid magni-
fying small measurement errors. (Rough dielectric with isotropic Beckmann
roughness & = 0.2.)

4.1 Anisotropic Microfacet BSDFs

Consider the reflection component of a standard microfacet model

F(up) G1(pi, $i) G1(kos $o) D(pp, $1)

4| pi plol
where F is the Fresnel term, D is normal distribution function, Gy
represents Smith’s separable shadowing and masking terms, and
Up, ¢p denote elevation cosine and azimuth of the half-direction
vector between incident and outgoing direction. Using the (up, @p)
parameterization, the anisotropic Beckmann distribution D is de-
fined as

fpis dis pros $o) = . (18)

1

4
Taudojly,

I’I‘i (cosz(ﬁh i sinngh )

2 2 2
e Hy xy *

D(pup, ¢n) = (19)
We use a combination of analytic and numeric integration tech-
niques to compute the needed Fourier expansion coefficients fy ;.
Specifically, we split the BSDF into the product

fD(/Jl'v/JOa ¢d’ ¢S) : fF(/’li’ .LIO’ ¢d) : fGl(yl'v ¢l) : fGl(IJOV ¢0)’ (20)

which separates the NDF, Fresnel, and separable shadowing-masking
terms. As the main source of high-frequency variation, the micro-
facet NDF fp requires special precautions and is projected using a
semi-analytic approach. Note that is also the only factor in need of
a full 2D Fourier expansion, as the Fresnel and shadowing-masking
factors only vary with respect to a single azimuth parameter. Simi-
lar to Jakob et al. [2014], we then exploit the convolution theorem
to convert the multiplications in Equation 20 into convolutions of
complex Fourier coefficients defined as

(gxh)i= Y, gk hik: (21)
k=-00

In our case, the convolutions have the following new structure on
the two-dimensional domain (¢, ¢4):

F1f] 71D] F1F]

ki

FlG1(@i)] FlGi(wo)]

1;8_4@7@ A/{@B\
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Assuming that the individual Fourier series are available, these
convolutions have negligible cost: all terms except for the first are
short and only involve at most dozens of coefficients. Secondly,
only one-dimensional convolutions are required if the evaluation is
carried out in a suitable order. We now focus on each term in turn:

4.1.1  Exponential Component. Ignoring constant normalization
factors, the microfacet distribution term fp can be written as

fD(¢Sv bq) = gCote cos Pa+ca cos ps+cs cos(Pg+Ps)+ca cos(Ppa—Ps) (22)

for constants ¢y, c1, c2, c3, c4 that only depend on variables not re-
lated to azimuths, specifically y;, pio, oy, @7 and the relative index
of refraction #:

=%Y(%+%) (ul 1+7 (uo—l))

@+ ok ) g1 = 1= 42

o
Cz—Y(ai—au)nxll—u?\/l—uﬁ
1 2
o= rla-d)r -
1
a-brle-)
1 Mo
where y= —————— and p=—.
ag; af, (i = o) i

They are valid for both refraction and reflection, in which case
n = 1. For isotropic materials (a;, = @y), only ¢ and c¢; take on
non-zero values and are equivalent to the constants given by Jakob
et al. [2014].

Unfortunately, we are not aware of an analytic mechanism to
directly compute the Fourier series of Equation 22. However, note
that if the exponential argument only depended on a single azimuth
argument, a variant of the Jacobi-Anger expansion (Abramowitz
and Stegun [1964], 9.6.34) yields

eA+Bcos(¢+C) — A Z I.(B) eik(¢+C)

keZ

(23)

where Ii.(z) are modified Bessel functions of the first kind. Our ap-
proach, then, is as follows: assuming that the azimuth sum parameter
¢s is a constant, we can use phasor addition

z
c1cos(@ + §1) +ca cos( + 2) = c3 cos(@ + )
SEOSP TP T COSP T P2) = B COSP T )

Re{z} Re{z;} Re{z;}
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to bring Equation 22 into the above form:

fo(@a) = eArBeos@a+O) - ywhere (24)
A = ¢y + czcos s,
B=|z],
C = arg(z),

and z =c1 + (c3 + cq) cos ¢s + i(c3 — cq) sin Ps.

In other words, for fixed ¢s, it is straightforward to compute the
Fourier series over ¢y4. The angle sum parameter ¢, in turn, is
easy to handle as it has significantly lower frequency content. We
therefore use Filon [1928] quadrature to determine the Fourier coeffi-
cients along this second dimension, using 30 evenly spaced samples
on the interval ¢5 € [, 7). The main differences compared to

Jakob et al. [2014] are the higher dimension of the transform and ad-
dition of the phase shift C, which captures the bilateral asymmetry
due to anisotropy. The remaining three projections of the Fresnel
and geometric terms rely on pure quadrature (i.e. without nested
analytic integration).

90°

0.8

X X
(on back side) (on back side)

0.00 0.0

(c) SVD-based regularization

(d) QR-based regularization (ours)

Fig. 5. Transmission plots (T??) of an isotropic dielectric (57 = 1.5, a = 0.2).
(a) Exponential component D. The thin outline indicates the region of
interest, where the BSDF takes on non-negligible values. (b) Analytic
reference of the Fresnel component F. (c-d): Localized Fourier expansions
using the two different regularization strategies.

4.1.2  Fresnel Component. The Fresnel term F is not affected by
anisotropy and only depends on the azimuth difference ¢4. It is
normally very well-behaved, but a problematic case arises when
passing into a material of lower density—here, F contains high
frequencies near the critical angle, where the reflectance rapidly
jumps to 1. Although the peaked exponential term of the microfacet
model typically masks this behavior, any high frequencies in F
will cause global ringing in the Fourier series that reduce accuracy
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elsewhere. Jakob et al. [2014] address this problem via a custom
Fourier projection that optimizes Ly error on a subinterval ¢, €
[#min, $max ], where the BRDF actually reflects appreciable amounts
of light. This involves a restricted inner product

(. hya = /Q 9() h($) dg

in conjunction with a change of basis of the projections (g;, F)

1
Fo (g0, 90)0 (g0.9a)0 (g0, F)q

Fy {q4-90)0 (qa-9a)0 {qa- F)a

=M(Q)
where q;(¢) = cos(l¢p) and Q = [Pmin, Pmax]. The authors solve this
linear system using a truncated pseudo-inverse, as it is severely
ill-conditioned when @in ~ Pmax.

We found that the necessary SVD factorizations are a significant
bottleneck, requiring up to 90% of the total time needed to project
a microfacet model. We therefore use the following scheme with
improved behavior: we extend the linear system with two soft con-
straints M([—7, ¢min])F = 0 and M([¢pmax, 7])F = 0 weighted by
& = 0.00001—effectively a type of Tikhonov regularization. Their
objective is to smoothly force the Fourier series to zero outside of
the region of interest. This turns the linear system into an over-
constrained system that can be solved using a much simpler QR
factorization, while yielding functions with overall smoother behav-
ior (Figure 5).

4.1.3 Shadowing-Masking component. We use Smith’s separa-
ble shadowing-masking function which allows us to build two 1D
Fourier series along ¢; and ¢, (again using Filon quadrature). We
then transform them into the common (¢s, ¢4) space and perform a
diagonal convolution to combine them with the 2D coefficient array
of the remaining Microfacet BSDF.

4.2 Choice of discretization parameters

When converting anisotropic Microfacet BSDFs into the Fourier
representation we must choose suitable discretization parameters n,
ms, mg. We reuse the approach of Jakob et al. [2014] to set n and
mg based on the smaller roughness value min{ay, a, }. To select
a suitable anisotropy-related parameter mg, we instantiated many
layers of different sizes, in each case searching for the minimal value
of mg that achieves a relative Ly error below 1%. We found that the
required number of coeflicients is related to the roughness ratio
Xy Ay

a = max(g*, 5%). ie. the amount of anisotropy. The dependence

of mg on @ is closely approximated by the following linear fit:

ms(a) = [ax + b], where a = 2.58 and b = —1.82. (25)

4.3 Measured BSDFs

Our system also supports measured BSDF data, which entails numer-
ical evaluation of the Fourier projections (17) using an interpolant of
the discrete set of BSDF measurements. We assume that the measure-
ment is dense in the (p0, ¢o) parameters for a smaller set of incident
light directions (y;, §;). To enable evaluation of the BSDF for arbi-
trary incident light directions, we transform each (y;, ¢;)-slice into
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Fig. 6. Different combinations of a conductor base layer (gold) with dielectric
coating (17 = 1.5) using varying values of anisotropy along two axes.

the half-vector domain, where we construct a linear interpolant. Fi-
nally, for each pair of elevation angles (u;, fto), we densely evaluate
the interpolant on the (¢s, ¢4) domain and use FFTW [Frigo and
Johnson 2005] to transform the values into the Fourier domain.

5 RESULTS

We implemented our method in a modified version of the Mitsuba
renderer [2010], using the Eigen [2010] library for most sparse
matrix manipulation and UMFPACK [Davis 2004] for sparse LU
factorizations. The generated reflectance models admit a perfect im-
portance sampling scheme that involves mapping uniform variates
to the integrated Fourier series. This portion closely resembles the
sampling scheme of Jakob et al. [2014] and just needs to be adapted
to an exponential Fourier series—we provide additional detail in the
supplemental material. For the special case of isotropic materials,
all our results are in perfect agreement with prior work.

The remainder of this section illustrates the visual impact of
anisotropic layer interfaces and shows validations of both additive
and subtractive layer composition using ground-truth Monte Carlo
simulations and measured reflectance data.

5.1 Kitchen scene

Figure 1 contains a wide variety of anisotropic surfaces including
coated anisotropic metals, combinations of measured transmissive
and analytic conductive layers, and wall tiles made of anisotropic
dielectrics with internal scattering that simulate the anisotropy of
machined plastic. All surface except for the base of the table are
anisotropic, and layering computations for all 20 materials took a
total of 20min 3s on a 4-core i7-6700K CPU. The scene involves

ACM Transactions on Graphics, Vol. 37, No. 4, Article 74. Publication date: August 2018.
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Table 2. Layer adding statistics for typical configurations of conductive bottom layer with dielectric coating (r = 1.5).

Roughness (top) Roughness (bottom) Time Sparsity

ay ay ay ay total addingonly top  bottom combined Storage size
0.1 0.1 0.05 0.05 2.6s 0.6s 0.011% 0.019% 0.022% 2.8 MiB
0.1 0.1 0.1 0.1 2.6s 0.6s 0.011% 0.017% 0.02% 2.6 MiB
0.1 0.1 0.3 0.3 2.2s 0.3s 0.011% 0.008% 0.018% 2.3 MiB
0.1 0.1 0.05 0.15 26.8s 16.9s 0.011% 0.489% 0.208% 31.1 MiB
0.1 0.1 0.1 0.3 24.2s 16.9s 0.011% 0.336% 0.144% 27.3 MiB
0.15 0.05 0.05 0.15 15min 13min 0.059% 0.087% 0.01% 214.1 MiB
0.3 0.1 0.1 0.3 67.5s 52.2s 0.29%  0.336% 0.39% 31.3 MiB

Fig. 7. Layered material examples with an anisotropic gold conductor. (a)
Base layer only (e, = 0.05, ¢, = 0.3), (b) covered in a layer of forward scat-
tering HG medium (albedo = 0.95, g = 0.5), (c) coated with an anisotropic
dielectric (7 = 1.5, @y, = 0.3, ap, = 0.05), (d) covered with blue scattering
HG medium (albedo = [0.6, 0.8, 0.95], g = 0.2) and isotropic dielectric
coating (7 = 1.5, @y, = @, = 0.05)

complex glossy-to-glossy transport in conjunction with direction-
ally peaked spot light sources, which required a large number of
samples per pixel (40K) and a correspondingly long rendering time
(80 hours on a 12-core Xeon E5-2680 machine) to reach convergence.
The challenges of rendering glossy-to-glossy transport are largely
orthogonal to our work and could be alleviated by using more ad-
vanced integration techniques (we used simple path tracing with
multiple importance sampling).

5.2 Layering anisotropic materials

Figure 6 illustrates the space of anisotropic surface appearance that
can be realized by composing a conductive layer with a rough di-
electric coating. Both layers are either isotropic or have pronounced
anisotropy along one of two tangential axes. Changing the bottom
layer generally has a greater effect on the final BSDF, though the top
layer also plays a noticeable role due to the addition of highlights
and directional blur.

In addition to the anisotropic interfaces, our framework remains
compatible with all ingredient layers of prior work [Jakob et al.
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Bottom: conductor Top: dielectric

Roughness Roughnass

©

Fig. 8. Interactive layer visualization. (a) Dragon scene, (b) Shapes scene, (c)
user interface to change layer roughness parameters.

2014]. This enables the composition of anisotropic materials with
layers containing absorbing or scattering media using the Henyey-
Greenstein phase function—several examples are shown in Figure 7.

5.3 Interactive viewer

An image viewer provided in the supplemental material enables in-
teractive exploration of a 4D parameter space of anisotropic surface
reflectance (Figure 8). It contains two different scenes—the Stanford
dragon and a set of cylinders with textured anisotropy—both ren-
dered using a coated gold layer. The roughness parameters (o, o))
of both layers are individually adjustable using an HTML widget,
and the layers can also be removed to see the base or coating in
isolation.

5.4 Performance and storage cost

While our implementation retains the efficiency of Jakob et al. [2014]
when dealing with isotropic layers, the presence of anisotropy and
resulting coupling between Fourier modes adds overhead to the
system during additive and subtractive composition. Table 2 lists
a few key statistics to compare the efficiency of adding typical
material configurations of isotropic and anisotropic conductors and
dielectrics. Note how the precomputation time is still well under one
minute for cases where only one of the layers contains anisotropic
scattering.

5.5 Validation

We validate our layering operators using both synthetic and mea-
sured BRDF data. For each experiment, we show hemispherical
BRDF plots (projected onto the unit disk) and renderings of the
Stanford dragon mesh with local tangent vectors provided by a
2-RoSy field computed using the Instant Meshes [Jakob et al. 2015]
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algorithm. Due to space constraints, we only show BRDF plots for a
single incident light direction (6; = 30°). The supplemental mate-
rial contains expanded versions of these visualizations with many
additional configurations.

Additive composition of synthetic data. Figure 9a visualizes addi-
tive composition of two anisotropic microfacet BSDF with perpen-
dicular anisotropy (Bottom: conductor a = (0.2, 0.1), top: dielectric
n = 1.5,a = (0.1,0.2)). The addition of the top layer causes direc-
tional blur that broadens the reflection lobe along the narrow axis,
though the transformation is more complex than a simple spherical
convolution. Multiple scattering involving both layers adds a faint
diffusive component surrounding the peak.

A sequence of spherical plots in the lower half of the sub-figure
compares evaluations of our model to a brute force Monte Carlo
simulation that propagates particles through a layer stack, accumu-
lating particles exiting the stack into a spherical histogram. The
plots show excellent agreement between the two approaches.

Subtractive composition of synthetic data. Figure 9b demonstrates
that composition also works in the opposite direction: we remove
a two-sided anisotropic dielectric (n = 1.5, = (0.2,0.3)) from a
two-layer structure involving an anisotropic conductive base layer
with a = (0.3,0.2).

Deconvolution-type problems require regularization to improve
resilience to noise, and the subtracting equations are no exception.
We thus add a small amount of uniform Tikhonov regularization (¢ =
5-107%) when inverting Ti’t and Tib in the subtracting equations.
When ¢ is set to too small a value, the solution becomes oscillatory
and is unusable—we therefore always choose the smallest possible
¢ that still leads to a solution without oscillatory behavior.

Additive composition of measured data. We used a pgll [PAB 2018]
gonio-photometer (Figure 10a) to measure several layers—first indi-
vidually, and then in a stacked configuration. The gonio-photometer
illuminates a flat A4-sized sample using a collimated beam gener-
ated by an arbitrary static light source. We used a Thorlabs HPLS
345 light emitting plasma lamp with an added infrared filter to gen-
erate broadband illumination in the visible range. The samples are
mounted in a motorized sample holder, whose rotation axes control
the elevation and azimuth of incident illumination. A motorized
two-axis sensor head with a monochromatic silicon photodiode
(First Sensor PS100-6b) records the scattered flux from arbitrary
positions on the sphere. All measurements combine a localized scan
of the reflection and transmission peaks along with a broader scan-
ning pattern that captures tail behavior (Figure 10b). Note that we
restricted ourselves to isotropic materials in the measurement-based
validation experiments due to the significant challenge of acquiring
dense 4D reflectance data.

The experiments in the bottom half of Figures 9 all use a polypropy-
lene sheet with two rough interfaces (Figure 10c) as the top layer.
This material strongly blurs transmitted light, particular at low an-
gles of incidence (Figure 10d). The surface finish on the top and
bottom surfaces is slightly different, hence it was necessary to mea-
sure the material from both sides.

The first two columns of Figures 9c and 9e visualize measure-
ments of the transmissive PP layer and two different types of base
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Sample holder

Fig. 10. (a) We use a pgll gonio-photometer to densely measure the re-
flective and transmissive properties of several layered material structures.
(b) Visualization of a measured transmission lobe with lines highlighting
locations where the BSDF was sampled. After transforming this data into
our frequency-space representation, it can be used for both additive and
subtractive composition. (c), (d) For validation, we measured a diffusive
polypropylene sheet, whose rough top and bottom surfaces cause a varying
amount of directional blur that depends on the angle of incidence. We addi-
tionally measure layer combinations, with the PP layer on top of a matte
cardboard and a glossy metallic paper sheet. The bottom half of Figure 9
contains several validation experiments using the resulting data.

layers: a matte cardboard with a broad reflection and a paper with
a metallic coating that exhibits a strong specular reflection. The
third column contains renderings of the combined layer structures
computed using the adding equations, and the last column shows
a ground-truth reference created by layering the sheets on top of
each other and measuring them with the gonio-photometer. We
also show a quantitative analysis of our computed BSDF against the
ground-truth measurement in Figure 11 including pixel-wise CIE
dE00 error [Sharma et al. 2005] of the rendered results. The images
are almost indistinguishable.

Subtractive composition of measured data. This last experiment
is the most challenging: we now reverse the steps of the previous
computation. Using the measured layer combinations, we subtract
the top layer computationally and compare against the ground-truth
measurement of the bottom layer in isolation, using Tikhonov regu-
larization constants of ¢ = 0.06 and ¢ = 0.09 for the metallic paper
and cardboard, respectively. Figures 9d,f visualize the result of the
subtractive composition: the rendering reveals small differences at
grazing angles, which are challenging to infer due to the proper-
ties of the PP sheet (Figure 10d). This is supported by the analysis
in Figure 12: we observe large RMSE when approaching grazing
angles especially for the metallic paper. Note however that the ren-
dered results closely match with a perceptual error concentrated
only around small regions. Overall, we find that the reconstructions
computed using the subtracting equations are in surprisingly good
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Fig. 11. Error analysis for additive composition of measured data. Top: Root-
mean-square error of the computed BSDF against the measured reference
over incident elevation. Bottom: Color mapped visualization of the percep-
tual CIE dEO0O error of the rendered results.

agreement to the reference data given the challenging nature of this
problem.

6 CONCLUSIONS AND FUTURE WORK

We have presented a new framework for computing the reflective
and transmissive properties of anisotropic material structures. Being
able to reason about anisotropy in the context of material modeling
is crucial, as almost any machined surface is affected by it to some
degree. Our technique supports arbitrary composition of real-world
measurements and traditional anisotropic microfacet BSDFs and
is a major generalization of prior work that focused on the special
case of isotropic materials. Using our directional scattering oper-
ators, we furthermore introduce subtractive composition, which
reconstructs the BSDF of a material that is only indirectly observed
through another material with known properties. Modeling mate-
rials using layers produces a rich and high-dimensional space of
useful appearance models. The direct connection between appear-
ance and internal composition also leads to a useful set of physical
parameters that could be used for inverse problems in the context
of material design. The large set of possibilities motivates the name
of our technique: the flexible operator representation coupled with
a number of computational tools serves as a laboratory for a wide
variety of future experiments involving layers.

Our method is not without limitations: it currently does not scale
to extreme anisotropy, which occurs e.g. in some brushed aluminium
samples with RMS roughness ratios exceeding 1:1000. Furthermore,
the internal material parameters cannot be controlled by a spatially

Root Mean Square Error

—— Matte Cardboard
—— Metallic Paper

0° 18° 36° 9 54° 72° 90°
i

CIE dE00

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0

Fig. 12. Error analysis for subtractive composition of measured data. Top:
Root-mean-square error of the computed BSDF against the measured refer-
ence over incident elevation. Bottom: Color mapped visualization of the
perceptual CIE dE0O error of the rendered results.

varying texture, as each set of parameters requires a new layering
computation. This means that the model is likely not applicable to vi-
sual effects applications in its current form. That said, we believe that
our anisotropic layering model could serve as a useful ground-truth
in the development of more approximate techniques that do support
texturing in the future. The applications of subtractive composition
in the context of reverse engineering and cultural heritage preserva-
tions are exciting, but the currently used Tikhonov regularization is
rather simplistic. We believe that more advanced regularizers that
measure distances on the manifold of natural BRDFs [Nielsen et al.
2015; Soler et al. 2018] could considerably boost performance, and
we look forward to exploring this topic in the future.
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