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A GREEN’S FUNCTION AND POISSON KERNEL
In this section, we provide the Green’s function and Poisson kernel.
The Green’s function for a ball 𝐵(𝑥) is:
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where 𝑟 := ∥𝑦 − 𝑥 ∥, 𝑅 is the radius of the ball 𝐵(𝑥), 𝐼0 and 𝐾0 are
the zeroth order modified Bessel functions of the first and the sec-
ond kind. When sampling proportional to the Green’s function, we
normalize the PDF by dividing by:
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The Poisson kernel is the derivative of the Green’s function along
boundary normal:

𝑃𝜎2𝐷 (𝑥,𝑦) = 𝑛𝑦 · (𝑦 − 𝑥)
2𝜋𝑟2 𝑄𝜎

2𝐷 (𝑥,𝑦)

𝑄𝜎
2𝐷 (𝑥,𝑦) = 𝑄𝜎 (𝑟 ) =

[
𝐾1 (𝑟

√
𝜎) + 𝐼1 (𝑟

√
𝜎)𝐾0 (𝑅

√
𝜎)

𝐼0 (𝑅
√
𝜎)

]
𝑟
√
𝜎

𝑃𝜎3𝐷 (𝑥,𝑦) = 𝑛𝑦 · (𝑦 − 𝑥)
4𝜋𝑟3 𝑄𝜎

3𝐷 (𝑥,𝑦) (3)

𝑄𝜎
3𝐷 (𝑥,𝑦) = 𝑒−𝑟

√
𝜎 (1 + 𝑟√𝜎)+[

𝑐𝑜𝑠ℎ(𝑟√𝜎)𝑟√𝜎 − 𝑠𝑖𝑛ℎ(𝑟√𝜎)] 𝑒−𝑅
√
𝜎

𝑠𝑖𝑛ℎ(𝑅√𝜎) ,

where 𝑛𝑦 is the unit normal at 𝑦.𝑄𝜎 converges to 1 as 𝜎 → 0. We
use the notation𝐺𝜎
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for the radial distribution of the Green’s function that we use for
sampling.

B DELTA TRACKING WITH WALK ON STARS
In this section, we extend the delta tracking solver for spatially-
varying PDEs to handle Neumann boundaries. Our goal is to solve
the following mixed-boundary condition problem:

∇ [𝛼 (𝑥)∇(𝑢 (𝑥))] − 𝜎 (𝑥)𝑢 (𝑥) = 0 𝑥 ∈ Ω

𝑢 (𝑥) = 𝑔(𝑥) 𝑥 ∈ 𝜕Ω𝑑

𝜕𝑛𝑢 (𝑥) = ℎ(𝑥) 𝑥 ∈ 𝜕Ω𝑛 . (4)
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We assume the source term to be zero to slightly reduce notational
clutter. We then apply Girsanov and delta tracking transformations
and arrive at a screened Poisson equation:
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where 𝑈 (𝑥) and 𝜎′ (𝑥) are identical to the Dirichlet-only version
that is presented in the main text. For completeness, we repeat their
definitions here:

𝑢 (𝑥) = 𝛼 (𝑥)−1/2𝑈 (𝑥) (6)
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Unlike the Dirichlet-only version, Equation 5 now relates the
solution to its normal derivative on the boundary 𝜕Ω𝑛 . This is a
Robin boundary condition, which is not supported by the methods
we build on. We avoid handling Robin boundary conditions by
requiring the diffusion coefficient’s normal derivative (𝜕𝑛𝛼 (𝑥)) to
be zero on 𝜕Ω𝑛 .
Assuming ℎ(𝑧) = 0 to further reduce notational complexity, the

solution of Equation 5 satisfies:
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Similar to the delta tracking version of walk on spheres, we only
recursively evaluate one of the two integrals. We follow Sawhney
et al. [2022] and write the integral equation in the directional do-
main:
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Here, 𝑆 is the unit sphere of directions, |𝑆 | its surface area, 𝑟𝑖 is
the distance from the star’s origin to 𝜕𝑆𝑡 along direction 𝜔 . Similar
to walk on spheres, we use the following relation to determine
sampling weights:
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0
𝐺𝜎̄
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where we use |𝐺 |𝑟𝑖0 as a shorthand for the integral of 𝐺𝜎̄
𝑟 (𝑟 ) from 0

to 𝑟𝑖 . We would like to sample the first term in Equation 9 with a
probability of 1−𝜎 |𝐺 |𝑟𝑖0 . We first decide to either sample the volume
or the boundary term. This is done using a boundary probability of
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P𝜕𝑆𝑡 = 1 − 𝜎 |𝐺𝜎̄ |. In either case, we then sample a uniform direc-
tion 𝜔 .

Fig. 1. 𝑆𝑡 sampling in delta tracking.

If the boundary integral
is selected, the final sam-
ple is the intersection the
ray (𝑥, 𝜔) and 𝜕𝑆𝑡 . Oth-
erwise, we sample a dis-
tance 𝑟 ∈ [0, 𝑅] pro-
portional to the radial
Green’s function (𝐺𝜎̄

𝑟 (𝑟 ))
and project the sampled
point back to 𝜕𝑆𝑡 if 𝑟 >

𝑟𝑖 . This way, we increase
the boundary selection
probability to the desired
P𝜕𝑆𝑡 = 1 − 𝜎 |𝐺 |𝑟𝑖0 .

The sampling of the terms that occur when 𝑓 (𝑥) ≠ 0 and/orℎ(𝑧) ≠ 0
is straightforward and follows the estimators discussed in the main
text.

C NEUMANN BOUNDARY SAMPLING
In this section, we present a sampling strategy for Neumann bound-
ary contributions that does not require a BVH. Recall the Neumann
boundary term in the boundary integral equation:∫

𝜕𝑆𝑡𝑛
𝐺𝜎 (𝑥, 𝑧)ℎ(𝑧) d𝑧 (11)

To estimate this integral using Monte Carlo, we would like to uni-
formly sample points in 𝜕𝑆𝑡𝑛 . A naive approach would be to sample
points on 𝜕Ω𝑛 and check if they are in 𝜕𝑆𝑡𝑛 . This is inefficient,
as 𝜕𝑆𝑡𝑛 might only be a relatively small subset of 𝜕Ω𝑛 . Sawhney
et al. [2023] use a BVH to sample points that are likely in 𝜕𝑆𝑡𝑛 . Since
we model the domain boundary using Bézier curves, building an
efficient BVH is challenging and we instead use a directional sam-
pling strategy. Parameterizing the above integral over directions
yields:∫
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Fig. 2. Quantities used in Equation 13.

Here, 𝜔 is a direction
vector, 𝑧 (𝑥,𝜔) the inter-
section of the ray (𝑥, 𝜔)
with 𝜕𝑆𝑡𝑛 , ℎ(𝑧 (𝑥, 𝜔)) the
Neumann boundary value,
|𝐽 (𝑥,𝜔) | the Jacobian of
the parameterization and
1𝑆𝑡𝑛 (𝑧 (𝑥,𝜔)) indicates if
the ray intersection is in
𝜕𝑆𝑡𝑛 . Expanding the Jaco-
bian term, the equation be-
comes:∫

𝑆
𝐺𝜎 (𝑟 )ℎ(𝑧 (𝑥,𝜔)) 𝑟

cos(𝜃 ′)1𝑆𝑡𝑛 (𝑧 (𝑥,𝜔)) d𝜔, (13)
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Fig. 4. Comparison between directionally uniform and our sampling. Black
lines are Dirichlet and orange lines Neumann boundaries.

where 𝑟 := ∥𝑧 (𝑥, 𝜔) − 𝑥 ∥ is the ray intersection distance and 𝜃 ′ is
the angle between the normal at the ray intersection (𝑛𝑧 ) and𝜔 . The
Green’s function only depends on the distance and we therefore
write it as 𝐺𝜎 (𝑟 ). Figure 2 illustrates some of the terms.

We found the division by the cosine term to cause high variance,
as it approaches zero at grazing angles. We therefore use an impor-
tance sampling method that approximately samples proportional to
this term. Assuming that 𝜕𝑆𝑡𝑛 is convex, we only encounter graz-
ing angles when the star’s origin 𝑥 is very close to the boundary.
If 𝑥 is on the boundary, we approximate the boundary as a circle
(Figure 3a). In that case, the angle 𝜃 ′ at location 𝑧 is identical to the
angle 𝜃 at 𝑥 . We therefore generate samples in the upper semicir-
cle proportional to (cos𝜃 )−1, with 𝜃 ∈ [−𝜋/2, 𝜋/2]. If the point is
not on the boundary but close to it (Figure 3b), we apply the same
sampling, but use the reverse normal direction. We clamp the PDF
to constant value for angles |𝜃 | > 𝜋/2 − 𝜖 , as (cos𝜃 )−1 itself is not
integrable. We found this clamping to work well, since for these
extreme angles either 𝑟 (if 𝑥 is on the boundary) or 𝐺𝜎 (𝑟 ) (if 𝑥 is in
the interior) approaches zero. Finally, we use multiple importance
sampling to combine our strategy with uniform sampling. After
generating the sample, we compute the ray intersection to check if
the sampled point is in 𝜕𝑆𝑡𝑛 .

(a) 𝑥 is on the boundary (b) 𝑥 is near the boundary

Fig. 3. Approximation of the boundary for different cases.

Our sampling strategy is not as efficient as using a BVH, but it is
easy to implement andworks for any surface representation. Figure 4
compares the results of directionally uniform and our sampling.
Uniform directional sampling occasionally produces outlier samples,
causing noise in the final estimator.

D FD RESULTS IN 2D
Figure 5 shows gradients with respect to coefficients of the elliptic
PDE. The objective function is the 𝐿2 norm of a 32 × 32 solution
image (i.e., the optimization tries to reduce the value of the solution)
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Fig. 5. Comparison between our gradient estimate and the finite differences
reference for the various parameters of the general elliptic PDE in 2D.
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Fig. 6. Finite difference computation of the circle representation. As for SDFs
(see main text), we evaluate the gradients for different normal derivative
evaluation offsets 𝑡 . A smaller offset significantly reduces bias.

and the coefficients are 64 × 64 textures with cubic interpolation.
As in the 3D example, gradients constructed using path replay and
weight windowing reveal a perfect match against the reference.

E FD RESULTS FOR CIRCLES
In this section, we present additional validations for the circle repre-
sentation for discrete EIT. Figure 6 provides gradient validations and
Figure 7 shows optimization results for a few synthetic examples
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Fig. 7. Optimization results of discrete EIT using the circle representation. Columns (a) show the optimization progress, column (b) the reference voltage
values and columns (c) show the error to the reference both at the start and end of optimization.
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