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Abstract

This supplemental material provides detailed derivations and
parameters for recreation of results presented in the main body
of our paper. In particular, we show a detailed derivation of the
BRDF from Harveys diffracted radiance on which our model
is based. Additionally, we list all render settings and scratch
parameters and the corresponding render times for all results
obtained with our model.

1 Diffracted radiance

Our model builds on tools from Fourier optics [1], specifically
the angular spectrum and the concept of diffracted radiance [2],
which we review here for completeness. Being part of a scalar
theory of light transport, these two tools assume that the elec-
tromagnetic field can be described by the (scalar) amplitude
of the oscillations that make up the electromagnetic field, as
opposed to the commonly used vectorial electric and magnetic
fields. This approximation is accurate in the far-field and for
diffracting apertures that are larger than the wavelength of the
radiation. Without loss of generality, we restrict ourselves to
monochromatic radiation at a wavelength of λ. The following
discussion assumes that all spatial coordinates are expressed in
units of λ, since this leads to simpler mathematical expressions.
Let U(x, y, z) denote the scalar amplitude at position (x, y, z)T ,
and let U0(x, y) := U(x, y, 0) denote a planar slice at position
z = 0 (here called the aperture plane). A well-studied problem
in this domain entails computing U(x, y, z) for z > 0 given the
amplitude distribution in the aperture plane U0(x, y). In the
context of Fourier optics, solutions can be found by taking the
Fourier transform of all quantities in the xy-plane, i.e.

V (α, β, z) := F
{
U(·, ·, z)

}
α,β

, V0(α, β) := F
{
U0(·, ·)

}
α,β

,

(32)
and solving the Helmholtz equation [∇2 + 4π2]U = 0 analyt-
ically in terms of the frequency-space representation V . The
latter has an intuitive physical interpretation: the amplitude
U(x, y, z) on any fixed z-slice can be described as a super-
position of plane waves arriving from different directions. In
this context, V (α, β, z) ∈ C denotes both phase and amplitude
of such a plane wave arriving from direction (α, β, γ) where
γ =

√
1− α2 − β2 (Figure 3a, main paper). The variables

of this parameterization are referred to as direction cosines.
Evaluating the superposition of plane waves is equivalent to
an inverse Fourier transform that recovers the original signal.
Assuming that radiation travels undisturbed through the half-
space z > 0, the Helmholtz equation has a particularly simple
solution which states that the plane waves arriving at any z-
slice correspond exactly to those at z = 0 except for a phase
shift V (α, β, z) = V0(α, β)ei2πγz. This solution is exact un-
der the stated assumptions, but the resulting field U(x, y, z)
is prohibitively expensive to evaluate due to its definition in
terms of a pair of Fourier transforms. We instead rely on a
far-field approximation, which makes the reasonable assump-
tion that the distance between the surface and the camera is
much greater than the wavelength of light (Figure 3a andFig-
ure 4(d), main paper). This far-field approximation, known as
diffracted radiance, was introduced by Harvey et al. [2] and is

defined as

L(ω) =
λ2

As

∣∣F {U0(·, ·)}
∣∣2
α,β

=
λ2

As

∣∣V0(α, β)
∣∣2, (33)

where ω = (α, β, γ). U0 describes both the source for the field
at z>0 and the result of the radiation incident at z=0, as the
corresponding angular spectrum V0(α, β) is given by the su-
perposition of plane waves from all directions. A change of the
direction of incident radiance by direction cosine βi results in
a shift applied to all plane waves contributing to V0(α, β), and
the angle-shifted angular spectrum now reads V0(α, β−βi) (we
show the one-dimensional case for simplicity, but the concept
holds for the second dimension as well). As angular spectrum
and complex amplitude are related by a Fourier transform, this
can be interpreted in terms of the Fourier shift theorem as a
linear phase shift applied to U0. An additional attenuation fac-
tor, the third direction cosine γi [2], accounts for the decreased
intensity at oblique incident angles and modulates Eq. 33 as

L(ω, αi, βi) = γi
λ2

As

∣∣V0(α−αi, β−βi)
∣∣2 (34)

= γi
λ2

As

∣∣F{U0(·, ·) e2πi(βiy+αix)}
α,β

∣∣2.
This influence of the angular distance in direction cosine space
on the diffracted radiance is also known as shift invariance.

BRDF model

Following Sec.3.2 (main paper) we repeat the well-known def-
inition of the bidirectional reflectance distribution function
(BRDF) and the accompanying notations for completeness;

fr =
dLs(x, ω̂o)

dEi(ω̂i)
, (35)

which relates differential irradiance to scattered radiance. x
represents a position on the surface, ω̂i is the direction from
which this surface is illuminated and ω̂o the direction from
which it is observed. The radiance scattered by a diffracting
aperture is given by Eq. 34 as a function in direction-cosine
space using a coordinate system where all spatial variables are
normalized to the optical wavelength. A change of variables
enables us to rewrite the representation of the Fourier trans-
form in a non-scaled coordinate system as

Ls(ξ) = γi
1

As

1

λ2

∣∣F{U0(x)
}∣∣2
ξ1,2

(36)

We can describe the complex wavefront U0(x) in the surface
plane by the modulation of the wavefront of the incident light
Ui(x) with the so-called transfer function T (x) [3, 1] of the
diffracting plane as

U0(x) = Ui(x) · T (x). (37)

Since the diffracting aperture is uniformly illuminated ([2]), we
can neglect the position dependence of the complex amplitude
of the incident light in the aperture plane. Thus, Ui(x) = Ui is
a constant modulation factor. Substitution into Eq. 36 then
yields

Ls(ξ) = γi
1

As

1

λ2
|Ui|2

∣∣F{T (x)
}
ξ1,2

∣∣2. (38)
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In the context of a BRDF definition, Ui corresponds to the
differential incident radiance, i.e. Ei = |Ui|2, which enables us
to substitute Eq. 38 into Eq. 35; we can therefore write

fr(ξ) = γi
1

As

1

λ2

∣∣F{T (x)
}
ξ1,2

∣∣2. (39)
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Figure Nλ Scene
Scratch

Scratch parameters Variation parameters
Render time

count [min]

Fig. 1 (middle)
16

Dining table 300000 UD[0, 6]µm; UW [0, 6]µm – 93
Fig. 1 (insert) 197
Fig. 1 (right)

16
Door 370000 UD[0, 6]µm; UW [0, 6]µm – 32

Fig. 1 (insert) 67

Fig. 6 (top, left) 16 Door 370000 UD[0, 6]µm; UW [0, 6]µm D[1.1, 0.04] 33
Fig. 6 (top, middle)

16
Dining table 300000 UD[0, 6]µm; UW [0, 6]µm D[1.1, 0.04] 120

Fig. 6 (insert) 147
Fig. 6 (top, right) 16 CD 3128400 D = 120nm; W = 1µm 1029
Fig. 6 (bottom, left) 16 Spoon 100000 UD[0, 6]µm; UW [0, 6]µm D[1.1, 0.04] 69
Fig. 6 (bottom, middle) 16 83
Fig. 6 (bottom, right) 16 368

Fig. 7 (b, @1MP) 16 Plate 3000 GD[250, 80]nm;GW [4, 1.3]µm D[1.1, 0.04] 15
Fig. 7 (d) 16 Disc 3700 GD[250, 80]nm;GW [5, 1.6]µm D[1.1, 0.03] 25

Fig. 8 (b) 16 CD BRDF∗ BRDF∗ – 200
Fig. 8 (d) 16 CD BRDF∗ BRDF∗ – 204

Fig. 9 (left, incoherent) 16 Grated plate 1600 D = 1µm; W = 1µm – 14
Fig. 9 (right, coherent) 19

Fig. 10 (a) 16 Scratched plate 1500 D = 250nm; W = 1µm D[1.1, 0.04] 32
Fig. 10 (b, specular) 23
Fig. 10 (c, diffuse) 23

Fig. 11 (a) 16 Dining table 300000 UD[0, 6]µm; UW [0, 6]µm – 266
Fig. 11 (b) D[1.1, 0.04] 284
Fig. 11 (c) – 167
Fig. 11 (d) D[1.1, 0.04] 168

Fig. 12 (left, @1MP) 3 Ring 547381 D = 500nm; W = 1µm – 23
Fig. 12 (right, @1MP) 3 Plate 481905 GD,W [4.0, 0.01]µm 31

Fig. 17:SuppMat (left) 16 Plate 3000 D = 1µm; W = 2µ D[1.1, 0.03] 30
Fig. 17:SuppMat (right) 16 Plate 3000 D = 1µm; W = 2µ D[1.1, 0.03] 31

Performance values, scratch parameters and render settings for the renderings presented. Rendering was performed on 72 CPU
cores (i7-5820K@3.30GHz) and, if not stated otherwise, corresponds to a resolution of 4MP@16384 samples per pixel(SPP).
The high number of SPP results from the fact that we rely on Monte Carlo integration over the pixel footprint, which is
inherently done by the ray-tracer, to achieve incoherent superposition of the coherent subsamples responsible for diffraction
and interference. All scenes except Figures 7, 8, 9 and 10 were scratched using our editing tool.

Nλ gives the number of spectral samples used, the total number of scratches within the scene is given by scratch count.

Scratch parameters describes the parameters used to generate the scratch profiles on the surface, namely width and depth.
U [lower, upper] refers to a uniform, G[mean, stddev] to a Gaussian distribution from which these parameters are drawn and
the respective parameter is denoted via the index W for width and D for depth. For constant parameters the notation reads
index = value.

Variation parameters are given as a tuple [amplitude, frequency] describing the relative variation amplitude and frequency of
the respective parameter. The frequency thereby is based on a simplex-noise function with 255 gradients, such that a frequency
of 1/255 corresponds to exactly one oscillation along the scratch. Notation for the respective parameter is given by the prefix
W [· · · ] for width and D[· · · ] for depth.

Render time is given in minutes and is always set to the next larger integer value.

BRDF∗ relates to a CD-BRDF generated for periodic surfaces. We created an ensemble of parallel scratches within one circular
coherent sample, their parameters depth and width as well as their separation are taken from Stam [4]. Only view- and lighting
conditions change within the rendering, the ensemble itself is constant. For the parameters taken from Stam, the number of
scratches within the coherence area, and thus every coherent subsample, is n = 2 3σ

∆track+Wscratch
+ 1 ≈ 21, where ∆track is the

track separation, Wscratch the scratch width and σ = δc/6 the standard deviation of the Gaussian filter kernel.
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Figure 15: Comparison of radiance reflected of a scratched surface. The numerical solution (left) was computed using an
explicit heightmap (c.f. Fig. 16), the analytical solution (right) was obtained using our model. The ghosting artefacts due to
discretization are suppressed with increasing resolution of the heightmap whereas the parallelogram-shaped features originating
from scratch-scratch intersections are not reproduced by our model. The (square) heightmaps are supplied with resolutions of
9 MP (upper row), 36 MP (middle row) and 144 MP (bottom row) with an area of 1 mm2. This figure supplements Sec. 6:Ap-
proximation evaluation.
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Figure 16: Surface heightmaps used as input for the numerical
computation of reflected radiance for a single scratch (left)
and ten randomly distributed scratches (right). This figure
supplements Sec. 6:Approximation evaluation.

Figure 17: Rendering of a scratched plate with 3000 scratches
uniformly distributed on the surface. Scratch parameters
(depth, width) are kept constant, only the profile is changed
from rectangular (left) to triangular (right). The change of the
scratch profile results in a different scratch response function
and thus reflectance distribution visible as a change in color
of the scratches. This figure supplements Sec. 7:Other scratch
profiles.
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