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1 ATTACHED DERIVATIVES: RECURSIVE FORMULATION

Equation (5) in the main paper specifies an energy balance equation for differential light transport in the detached
case and is obtained by differentiating the rendering equation. Here, we perform a similar derivation for the case
of attached derivatives, starting with the rendering equation (without emission) expressed as an integral over
primary sample space:
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where T maps uniformly distributed random variates u € [0, 1)? to sampled directions, and p is the solid angle
density of the generated samples. Similar to the derivation for detached derivatives, we can now compute the
derivative with respect to the scene parameter 7:
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We used the product rule and the multivariate chain rule to split the derivative into three separate terms. The first
two terms involve the primal incident radiance and its parametric derivative. They resemble the detached case
and can therefore be evaluated analogously. However, the third term is new and requires the directional derivative
of the incident radiance. To obtain this new type of derivative at each bounce of the adjoint pass, we initially
compute the derivative of the incident radiance with respect to the camera ray and then perform appropriate
transformations (Listing 3) while re-tracing the path during the adjoint pass.

2 UNBIASEDNESS OF PROBABILISTIC REGULARIZATION

As discussed above, the adjoint phase of our attached estimator requires an unbiased estimate of the directional
derivative of the incident radiance at every path vertex. Regularization (discussed in the main paper) is necessary to
avoid situations in which the associated computation becomes ill-defined. We now justify that this regularization
of the Jacobian and the associated inversion of noisy matrices does not introduce bias.
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During the adjoint phase, we must undo the effects of the path prefix to obtain the directional derivative at the
current path vertex. This is in part done by subtracting matrices, which is unproblematic. However, the second
part is more involved: we must multiply the directional radiance derivative by the inverse matrix Jr_ai,. The matrix
Jray = A1 - Ay - - - Ay is the product of all the local ray derivatives A; encountered in the path prefix. The challenge
is now that some of these matrices may not be invertible (e.g., when the associated vertex has a diffuse BRDF).
The subsequent derivations will prove two claims:

(1) Adding noise to factors of the Jacobian product does not affect its expected value.
(2) This noise can be added in a way so that even an estimator based on matrix inverses remains unbiased.

Regarding claim (1), we must show that
E{Jray]l =E[A1-Ay---Ar] = E[(Ag +&0) - (Az + &) - - - (Ax + )] (3)
where Ay, ..., Ag are (fixed) matrices, and ¢y, . . ., & € R are i.i.d. random variables with an expected value of 0.

The equality follows directly from the linearity of the expected value and the statistical independence of the ¢.
Without loss of generality, we can consider the case of k = 2:

E[(A; + &) (A + &2I)] = E[A1A2] + E[e1IA2] + E[A 1] + E[e160] = E[A1A;] O (4)
—_—— —— —(—
=0 =0 =0

The first equality uses the linearity of the expected value. We then see that all terms except for the first one
become zero due since E[&] = 0.

Now for claim 2, we need to show that we can invert the prefix of that product without introducing bias. This
is possible by using the same noise both during the forward accumulation and the backward pass. We can then
invert the same matrices as during the forward pass. Under the assumption that the noisy matrices are then
indeed invertible, the computation of the relevant Jacobian at bounce i can be written as:

E[[(Ar+eaD) - (Ai+eD] (A +aD) - (A +&1) - (Agg + D) -+ (Ag + 6D | (5)
Path prefix

=E[[MM]_1MM (Aj +Ei+1I)"'(Ak+5k1)] (6)

=E[(Ai +&mD) - (A +&l)] O (7)

We see that we do not take the expected value of a matrix inverse, but the accumulated gradient sample values
only ever include regular matrix products and additive noise. Therefore, the regularization in itself does not
introduce bias. However, our system of adding uniform noise to every matrix is simplistic, and better strategies
may be needed to guarantee good numerical conditioning.
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3 DIFFERENTIABLE DELTA TRACKING

In this section, we provide the pseudocode for our differentiable delta tracking implementation. Listing 1 details
the forward rendering code for a volumetric path tracer with next event estimation using ratio tracking [Novak
et al. 2014]. For simplicity, the code does not support surfaces or multiple importance sampling. In Listing 2 we
provide the corresponding adjoint version. In particular, the pseudocode details how we use PRB in a nested way
to backpropagate through the transmittance estimation.

def sample_path_delta_tracking(ray):
L=00, B=1.0
X = ray.o

while active path:

t = -log(1 - sampler.next_1d()) / &

x += t * ray.d

if sampler.next_1d() <1 - o3 (x) / G:
continue
S *= albedo(x)

Lo, we = sample_emitter(...)

Xe =X, tr = 1.0

while not reached emitter:
t = -log(1 - sampler.next_1d()) / &
Xe t= t * we

tr *= 1 - 0;,(Xe) / &

L+=f % tr * L,
w;, phase_value, phase_pdf = sample_phase_function(...)
B *= phase_value / phase_pdf
ray = spawn_ray(x, ;)
return L

Listing 1. Volumetric path tracer with delta tracking pseudocode.
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def sample_path_delta_tracking_adjoint(ray, L, SL):
p=1.0
X = ray.o
while active path:
t = -log(1 - sampler.next_1d()) / &
x += t * ray.d

if sampler.next_1d() <1 - o3 (x) / G:
P,=1-0,(x)/¢6
S += backward_grad(P,, SL+L / P,)
continue

p *= albedo(x)

Py =0;,(x)/ &
O += backward_grad(P; * albedo(x), 6L+L / (P; * albedo(x)))

Le, we = sample_emitter(...)
Xe =X, tr = 1.0
nee_sampler = sampler.copy()
while not reached emitter:
t = -log(1 - nee_sampler.next_1d()) / &
Xe t= t * we
tr *= 1 - 04,(Xe) / &
Xe = X
nee_sampler = sampler.copy()
while not reached emitter:
t = -log(1 - nee_sampler.next_1d()) / &
Xe t= t * w,
r=1=-o0&e)/ &
8, += backward_grad(r, Sp*«f * tr * L, / r)
L-=pfx*tr L,
w’, phase_value, phase_pdf = sample_phase_function(...)
p *= phase_value / phase_pdf

8, *+= backward_grad(phase_value, &y * L / phase_value)
ray = spawn_ray(x, o)
return 5,

Listing 2. Pseudocode for the adjoint pass of the volumetric path tracer using delta tracking.
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