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Fig. 1. Inverse reconstruction of a scene with complex lighting and heterogeneous structure. Given the initialization (a), we seek to reconstruct the target
(b) involving normal-mapped surface variation and roughness changes on the fish sculpture, and the addition of a plant based on triangular geometry.
Using three rendered views of the target, we apply our proposed path replay backpropagation (PRB) (c) and a linear-time version of radiative backpropagation
(RB) [Nimier-David et al. 2020] (d) to reconstruct the modified sculpture and a heterogeneous medium approximating the plant. Our method computes
unbiased gradients and is able to converge to a higher-quality solution at equal time. The second and third rows show insets and PRB’s convergence over time.

Differentiable physically-based rendering has become an indispensable tool
for solving inverse problems involving light. Most applications in this area
jointly optimize a large set of scene parameters to minimize an objective
function, in which case reverse-mode differentiation is the method of choice
for obtaining parameter gradients.

However, existing techniques that perform the necessary differentiation
step suffer from either statistical bias or a prohibitive cost in terms of memory
and computation time. For example, standard techniques for automatic
differentiation based on program transformation or Wengert tapes lead
to impracticably large memory usage when applied to physically-based
rendering algorithms. A recently proposed adjoint method by Nimier-David
et al. [2020] reduces this to a constant memory footprint, but the computation
time for unbiased gradient estimates then becomes quadratic in the number
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of scattering events along a light path. This is problematic when the scene
contains highly scattering materials like participating media.

In this paper, we propose a new unbiased backpropagation algorithm
for rendering that only requires constant memory, and whose computation
time is linear in the number of scattering events (i.e., just like path tracing).
Our approach builds on the invertibility of the local Jacobian at scattering
interactions to recover the various quantities needed for reverse-mode dif-
ferentiation. Our method also extends to specular materials such as smooth
dielectrics and conductors that cannot be handled by prior work.
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1 INTRODUCTION
Recent progress on differentiable rendering has led to algorithms
that are able to evaluate the gradient of physically based light trans-
port simulations with respect to arbitrary scene parameters includ-
ing the properties of reflectance models, procedural or bitmap tex-
tures and volumes, geometry, and camera pose. Such derivatives play
an increasingly important role in the solution of inverse problems
due to the vastness of the underlying parameter space. Consider that
even a simple scene with a low-resolution material (e.g. 768×768
RGB texels) has over 1.7 million parameters that must all be op-
timized! In this high-dimensional setting, the gradient becomes
crucial, since it provides a direction of steepest descent that can
guide a variety of different gradient-based optimization algorithms.
Despite this encouraging progress, simulations featuring com-

plex light transport phenomena continue to pose severe challenges:
effects like global interreflection, subsurface scattering, and het-
erogeneous participating media produce immense amounts of un-
structured arithmetic, whose effect on derivatives must be carefully
tracked. The computation of derivatives must furthermore proceed
in reverse mode [Linnainmaa 1976; Griewank and Walther 2008]
to efficiently convert a small number of derivatives at the render-
ing algorithm’s output end into a large number of derivatives at
the input end. The output end typically involves a scalar objective
computed from the rendered image, while the input refers to the
high-dimensional scene parameter space.
The inevitable predicament faced by any task involving such a

reverse-mode differentiation step is that the differential version of
an algorithm requires access to certain quantities of the original
(henceforth “primal”) computation, and these accesses occur in an
order that is reversed when compared to the primal calculation.
Because of this fundamental ordering conflict, they normally cannot
be recomputed on the fly and must be obtained in some other way.
In a tiny self-contained calculation, it may be possible to simply
remember all steps, but this approach does not scale: recent graphics
cards can sustain up to ∼ 1012 single precision FLOPS, which works
out to roughly 4 terabytes of intermediate variable state per second.
The standard remedy to this problem entails discarding most

primal variables except for a sparse set of checkpoints [Griewank
and Walther 2000] placed at strategic locations like function calls
or the beginning of each 𝑛-th loop iteration. A checkpoint captures
the full program state at an instant of time, enabling recovery of
discarded information via re-computation in a classic computation
versus memory trade-off. However, even individual checkpoints
tend to be large in the context of rendering, and accessing them
incurs significant storage costs and memory access latencies.

An intriguing way to side-step the overheads of program reversal
via memorization is to actually perform the computation in reverse:
all problems discussed above will simply disappear if the individual
operations comprising a calculation can be evolved backwards in
time [Griewank and Walther 2000, Ch. 4.3]. The adjoint sensitiv-
ity method [Pontryagin 1962] from the area of optimal control is
the classical example of this idea: its primal phase integrates an
ordinary differential equation up to a certain point in time. Dif-
ferentiation then follows the same trajectory in reverse by taking
negative timesteps starting from the endpoint.

Nimier-David et al. [2020] recently introduced a new approach
to differentiable rendering termed Radiative Backpropagation (RB)
that follows this high-level motivation. The authors observe that
differentiable rendering is equivalent to the solution of a reversed
light transport problem, where gradients are emitted by the camera,
scattered by scene objects, and eventually received by objects with
differentiable scene parameters. This problem can be solved directly
without memorizing intermediate state, which removes the memory
footprint issue and also improves efficiency.

However, this work has two main limitations: RB is either biased
or requires a recursive radiance estimate at each scattering interac-
tion in addition to its own recursion, making its computation time
quadratic in the number of scattering events along a light path. The
method also cannot differentiate interactions involving perfectly
specular BSDFs, such as smooth conductors or dielectrics.
We propose Path Replay Backpropagation (PRB) to address both

limitations. Our method splits gradient evaluation into two separate
passes: in a first step, we sample light paths as usual and record a
small amount of information about each complete light path: in the
simplest case, this is just the path’s contribution to the (hypothetical)
image. Then, we reset the pseudorandom number generator and
recompute the same light paths once more, while backpropagating
derivatives to scene parameters. The key idea of our approach is
that certain steps of the computation can be inverted. By taking
advantage this invertibility and the data stored by the preceding
pass, we are able to recover all information required by the adjoint
phase on the fly.

The time complexity of the resulting algorithm has a linear depen-
dence on path length, while computing the same unbiased deriva-
tives as conventional AD with dramatically reduced memory usage.
The two-pass scheme can furthermore generalize to derivatives of
specular materials, requiring only a small amount of extra stor-
age (a 4 × 4 matrix per sample) that remains independent of path
length. PRB is the first method that can efficiently compute unbiased
reverse-mode derivatives of volume transport simulated using delta
tracking. In summary, our contributions are:

• a linear time, unbiased method for differentiable path tracing.
• a generalization of that algorithm to specular materials.
• the ability to efficiently differentiate unbiased volume transport
based on delta tracking.

The proposed PRB method and its predecessor (RB) leverage com-
plementary notions of reversibility: RB exploits the Helmholtz reci-
procity of differential light transport to compute arbitrarily many
derivatives using a single differential transport phase, while PRB
exploits mathematical invertibility to avoid redundant computa-
tion and storage. It is the combination of both types of reversibility
that finally opens the door to efficient and unbiased reverse-mode
derivatives of physically-based light transport.

2 RELATED WORK
Differential light transport in other fields. Derivatives of Monte

Carlo simulations that are highly related to recent work on differen-
tiable rendering have been used to model the criticality of nuclear
reactors [Lux and Koblinger 1990], and to perform inverse modeling
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of tissue [Hayakawa et al. 2001]. These types of methods are named
Perturbation Monte Carlo or Differential Monte Carlo.
Delta tracking [Woodcock et al. 1965] and similar approaches

based on null-collisions are widely used to sample the radiative
transfer equation, and discrete decisions in this method pose addi-
tional challenges during differentiation. A solution to this problem
was studied in the area of physics [Tregan et al. 2019] but remains
limited to forward-mode differentiation.

Forward path derivatives. Various prior works in computer graph-
ics have differentiated light paths in a forward sense, propagating
an infinitesimal perturbation of a scene or ray parameter through
the calculation to determine how it influences the rendered image
or outgoing ray. Such derivatives find use in texture filtering of
objects observed through specular reflection [Igehy 1999], when in-
terpolating computed diffuse [Ward and Heckbert 1992] or specular
illumination [Chen and Arvo 2000], and for adaptive sampling and
reconstruction [Ramamoorthi et al. 2007]. They can also be used
to determine valid specular path configurations to render effects
such as caustics or glints [Mitchell and Hanrahan 1992; Jakob and
Marschner 2012; Zeltner et al. 2020]. Derivatives have also been
used in image space, for example to render gradient images that are
subsequently reconstructed [Hua et al. 2019].
Our generalization of RB to the specular case involves forward

derivatives of materials to enable gradient-based optimization of
the index of refraction and shape of smooth dielectric or conducting
objects. The mathematics of this process are related to prior work
on specular path derivatives and path manifolds [Igehy 1999; Chen
and Arvo 2000; Jakob and Marschner 2012].

Differentiable rendering. Inverse problems in graphics and vision
require methods that are able to optimize an objective using scene
parameter derivatives, which often involves differentiable rasteri-
zation of meshes or volumes [Loper and Black 2014; Rhodin et al.
2015; Kato et al. 2018; Liu et al. 2019; Petersen et al. 2019; Laine et al.
2020]. These methods are restricted to primary visibility and ignore
indirect effects like shadows, interreflection and depth of field.
Differentiation of the full rendering equation [Li et al. 2018;

Nimier-David et al. 2019] is required when the optimization task at
hand involves such indirect effects. This is also the case for partic-
ipating media that are often characterized by significant multiple
scattering [Gkioulekas et al. 2013; Khungurn et al. 2015; Gkioulekas
et al. 2016; Zhao et al. 2016; Zhang et al. 2019; Che et al. 2020].
Khungurn et al. [2015] compute forward-mode derivatives to

optimize a 12-dimensional material appearance model, reusing the
contribution of a complete light path in a way that resembles our
two-pass scheme for non-specular interactions. In contrast, our fo-
cus is on techniques that are compatible with reverse-mode deriva-
tive propagation to simultaneously optimize millions of parameters.

Geometric discontinuities. Naïve differentiation of illumination
integrals yields incorrect gradients when differentiated parameters
influence the location of discontinuities (e.g. object silhouettes).
Li et al. [2018] proposed the first method to correctly account for this
effect via edge sampling. Later works have proposed more efficient
ways of addressing this issue by converting boundary integrals

into interior integrals [Loubet et al. 2019; Bangaru et al. 2020] or
sampling on a higher dimensional path space [Zhang et al. 2020].
Our paper studies ways of efficiently differentiating light paths

with many interactions, and we ignore discontinuities that would
only distract from this task. That said, reverse-mode propagation of
gradients can be combined with the change of variables approach
of Loubet et al. [2019], and a concurrent publication [Zeltner et al.
2021] explores aspects of such a combination.

Reversible programming. Time-reversibility has been used to re-
duce the costs of differentiation in fluid dynamics [McNamara et al.
2004], robotics [Hoshyari et al. 2019], and reversible residual net-
works in machine learning [Gomez et al. 2017; Chen et al. 2018].
Invertible neural network architectures can further be employed to
learn parametric sampling methods [Dinh et al. 2015, 2016].
Reversible computation also appears in quantum theory, which

models the temporal evolution of a system using unitary opera-
tors that are inherently reversible. Shimada and Hachisuka [2020]
recently proposed a Monte Carlo sampling algorithm that is con-
structed in this way to be realizable on quantum computers.

Our approach is similar to reversible programming methods, but
instead of explicitly running an inverse program, it relies on the
invertibility of the (low-dimensional) Jacobian relating the positions
of adjacent scattering interactions.

Automatic differentiation. Our method relies on automatic dif-
ferentiation (AD) for derivative evaluation. AD comes in two main
flavors: forward mode propagates derivatives in program order and
is ideal when the function to be differentiated has many outputs
and few inputs. Reverse mode is the diametric opposite and can
be challenging to use as outlined earlier. Our algorithm uses both
directions internally, which makes it an example of a mixed mode
method. Beyond the choice of directionality, AD covers a surpris-
ingly wide spectrum of methods owing to the diverse needs of
scientific software. Approaches range from simple dual number
representations [Siskind and Pearlmutter 2008] to compiler-like
frameworks that perform dataflow analyses on intermediate pro-
gram representations [Hascoet and Pascual 2013]. The underlying
principles were pioneered decades ago and are now the focus of
renewed attention thanks to the growing use of gradient-based op-
timization. We refer to the book of Griewank and Walther [2008]
that provides an excellent survey of this area.

3 BACKGROUND
We begin by reviewing relevant background material covering dif-
ferentiable rendering and radiative backpropagation.

3.1 Differentiable Rendering
Physically-based rendering techniques estimate high-dimensional
integrals on the space of light paths [Kajiya 1986] to compute inten-
sities 𝐼 𝑗 of pixels 𝑗 = 1, . . . , 𝑛 defined as

𝐼 𝑗 (𝝅) =
∫
P
𝑓𝑗 (x, 𝝅) dx. (1)

Here, the scene parameters 𝝅 encode a representation of the vir-
tual scene including the configuration of material and geometry, P
denotes the space of all light paths, x is an individual path and 𝑓𝑗
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quantifies the contribution of this path towards a pixel measure-
ment 𝑗 . In contrast, inverse rendering techniques solve a general
minimization problem of the form

𝜋 = arg min
𝝅

𝑔(I(𝝅)), (2)

where𝑔 is a differentiable objective function that takes the full image
as input. In the simplest case, 𝑔 might quantify the 𝐿2 difference
between I(𝝅) and a reference image. In more complex cases, it could
be a black-box nonlinear function such as a neural network. For
notational convenience, the remainder of this paper will only focus
on such optimizations with respect to a single scene parameter 𝜋 ,
though all techniques developed will also support simultaneous
optimization involving vast numbers of parameters.
Differentiable rendering techniques approach this challenging

minimization problem using gradient-based optimization and there-
fore require the ability to differentiate the full process of image
formation:

𝜕𝜋 𝐼 𝑗 (𝜋) = 𝜕𝜋

∫
P
𝑓𝑗 (x, 𝜋) dx =

∫
P
𝜕𝜋 𝑓𝑗 (x, 𝜋) dx, (3)

where 𝜕𝜋 B 𝜕/𝜕𝜋 . The second equality above moves the partial
derivative into the integrand, which is allowed if the integrand is
continuous. It also holdswhen the integrand contains discontinuities
(e.g. visibility-induced silhouette edges), and when their placement
within the integration domain is furthermore independent of the
scene parameter 𝜋 being differentiated [Loubet et al. 2019]. This case
arises for examplewhen the optimization targets participatingmedia
or the material properties of surfaces, while leaving the geometric
representation of the scene fixed. In this article, we focus on efficient
reverse-mode differentiation and disregard discontinuity handling
via reparameterization or edge sampling—in other words, we assume
that the above equality holds.

Equation (3) further assumes that the derivatives are taken with
respect to the integrand alone. However, integrals in computer
graphics are almost exclusively evaluated using Monte Carlo im-
portance sampling techniques that are typically constructed using
techniques like inverse transform sampling [Devroye 1986] that
effectively reparameterize the integral. This poses the question of
whether this reparameterization should be applied following differ-
entiation, or whether it should be applied at first and differentiated
along with the integrand. Because the sampling strategy may poten-
tially produce different distributions depending on the parameter 𝜋 ,
samples from the latter approach can be understood to smoothly fol-
low the motion of the underlying sampling strategy with respect to
perturbations in 𝜋 , which influences the variance properties of the
resulting estimators. Since they produce samples that are attached
to the underlying distribution, we refer to the latter as attached sam-
pling strategies and conversely denote the former case as detached
sampling strategies.

A concurrent article [Zeltner et al. 2021] examines the theoretical
and practical ramifications of these choices, and it also discusses
handling of reparameterizations in a reverse-mode context. In con-
trast, the present article explains how both detached and attached
sampling strategies can be evaluated using only a constant memory
footprint and linear time complexity.

3.2 Radiative Backpropagation
Naive application of automatic differentiation (AD) to a light trans-
port simulation leads to extremely high memory usage due to the
need to store intermediate steps of the primal computation that are
later accessed during reverse-mode differentiation. Nimier-David et
al. [2020] instead exploit properties unique to light transport and
turn reverse-mode derivative propagation into an independent sim-
ulation that transports derivative radiation from sensors to objects
with differentiable parameters. We briefly review how this works
and point out issues of this transformation addressed by our work.

We focus on the surface-only case for simplicity, where the light
transport in a scene satisfies the following energy balance equa-
tion [Kajiya 1986]:

𝐿𝑜 (x,𝝎) = 𝐿𝑒 (x,𝝎) +
∫
𝑆2

𝐿𝑖 (x,𝝎′) 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥ . (4)

Here, 𝐿𝑜 , 𝐿𝑒 , and 𝐿𝑖 refer to the outgoing, emitted, and incident
radiance, and 𝑓𝑠 is the bidirectional scattering distribution function
(BSDF). The product of incident radiance and BSDF is integrated
over projected solid angles 𝝎′⊥.

Nimier-David et al. then apply the derivative 𝜕𝜋 to both sides of
this equation, which produces several terms via the product rule:

𝜕𝜋𝐿𝑜 (x,𝝎) = 𝜕𝜋𝐿𝑒 (x,𝝎) +
∫
𝑆2
𝜕𝜋𝐿𝑖 (x,𝝎′) 𝑓𝑠 (x,𝝎,𝝎′) (5)

+ 𝐿𝑖 (x,𝝎′) 𝜕𝜋 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥ .

This equation can be interpreted as another kind of energy bal-
ance that now involves differential radiance 𝜕𝜋𝐿𝑖 , 𝜕𝜋𝐿𝑒 , and 𝜕𝜋𝐿𝑜
(a separate set of such functions exist for every scene parameter!)
Inspecting the various terms, this differential radiance can then be
seen to satisfy the following properties:
(1) Differential radiance is emitted when the primal emission 𝐿𝑒

depends on 𝜋 .
(2) Ordinary radiance generates differential radiance when it inter-

acts with objects, whose BSDF depends on 𝜋 .
(3) Finally, once created, differential radiance scatters like ordinary

light (i.e. involving the BSDF of scene objects).
Instead of performing a large number of differential transport simu-
lation to compute a gradient image 𝜕𝜋 I per scene parameter 𝜋 , and
then propagating these through the objective function 𝑔, Nimier-
David et al. follow an adjoint approach: starting with a single gradi-
ent image 𝜹I encoding the derivative of 𝑔, they solve equation (5)
in reverse by exploiting the reciprocity of the scattering and trans-
port operators [Veach and Guibas 1995]. In this case, only a single
differential simulation is necessary. However, two issues become
apparent when further scrutinizing their approach:
(1) The differential scattering equation (5) references the primal

incident radiance 𝐿𝑖 , coupling the primal and differential light
transport problems so that both must now be solved at the same
time. The standard approach for evaluating integral equations
using recursive Monte Carlo sampling then requires recursion
to handle both 𝜕𝐿𝑖 and 𝐿𝑖 . This double recursion leads to a
quadratic growth in the amount of computation as themaximum
paths length increases, which can be very costly when the scene
involves significant multiple scattering.
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While recursion could be restricted by probabilistically choosing
only one of the two terms, there is no obvious sampling scheme
to do so. Finally, variance in such a stochastic scheme would
increase exponentially due to this repeated sub-optimal choice.

(2) The method of Nimier-David et al. does not support materi-
als containing Dirac delta functions (e.g. ideal specular BSDFs
like smooth glass or metal surfaces). This case involves addi-
tional challenges that arise from coupling within specular chains,
which refer to uninterrupted sequences of vertices along a light
path involving such ideal specular materials.

Biased RB. Nimier-David et al. suggest that to avoid quadratic
time complexity, one can simply set the incident radiance 𝐿𝑖 to 1 dur-
ing differentiation. They argue that the resulting bias is innocuous
because gradients will still have the correct component-wise sign
and can thus be expected to converge to a local minimumwhen com-
bined with robust gradient-based optimization techniques. However,
we find that both of these claims are generally incorrect: the sign
may not match, and convergence is then also not guaranteed. In
particular, we found that the sign is only correct in a very local
sense for exactly the term 𝐿𝑖 (x,𝝎′) 𝜕𝜋 𝑓𝑠 (x,𝝎,𝝎′), in which the in-
cident radiance specifies a positive multiplicative factor. This means
that the sign of this product is preserved if the radiance is set to a
value of one. In practice, many such local gradients are accumulated
due to the global nature of light transport and scattering, and the
combination of these various signed quantities is not guaranteed to
result in a sum that still has the correct sign.

Figure 2 demonstrates this issue by optimizing an enclosed object.
In this case, emitter sampling is not available and the method must
rely on the incident radiance term that was assumed to equal 1. This
experiment shows that bias due to this approximation breaks the
convergence even in a simple unimodal 1D optimization problem.
Ourmethod produces unbiased estimates and converges as expected,
while retaining the linear time complexity of biased RB.

Note that we use the color scheme of Figure 2 throughout the
paper: gray, blue, and red denote zero, positive, and negative-valued
regions, respectively.

4 METHOD
We now explain the principles of our method, starting with the basic
idea that we then expand into a more general principle to address
the limitations noted in Section 3. We first focus on the detached
case and postpone the more complex attached case to Section 4.2.

4.1 Replaying light paths to estimate derivatives
While Monte Carlo estimators are in principle random, real-world
usage relies on deterministic pseudorandom number generators that
can be rewound or reinitialized to produce an identical stream of
variates. This turns out to be surprisingly useful because it enables
running two variants of an algorithm that will perform an identical
random walk. At the same time, these two algorithms can then use
the generated path vertices for different purposes.

We build on this idea to run a regular forward path tracing pass
that is followed by an adjoint pass visiting the same sequence of
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Fig. 2. Analysis of Bias in Radiative Backpropagation (RB) [Nimier-David
et al. 2020]. We optimize the scalar roughness of an indirectly illuminated
metal bunny contained inside a glass container. The left column shows the
reference configuration and optimization results obtained by our method
and biased RB. Not only did RB not converge here: it cannot converge
regardless of initialization. Due to the scalar objective and 1D parameter
space, we can exhaustively plot gradients for a range of initial and target
roughness values (right column). A zero-valued gradient is expected on
the diagonal, where initial and target roughness coincide. We also plot
intermediate optimization steps for the optimization task on the left. These
visualizations show that the gradients computed by our method match the
result of conventional AD. Biased RB is not only biased but also produces
incorrect signs throughout the parameter space. Optimization will therefore
fail even when initialized with the correct solution.

vertices. The first phase will determine the total amount of radi-
ance accumulated by the path, and the second “random” walk can
then exploit this information to precisely reconstruct the incident
illumination at each path vertex. Our method produces the same
result as automatic differentiation, while using a constant amount
of storage and retaining the linear time complexity of regular for-
ward path tracing. The results do not just match conventional AD in
expectation: they produce the same noise pattern, with only small
numerical differences related to the different evaluation in terms of
IEEE-754 floating point arithmetic.
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Our method is best explained using a few lines of pseudocode. To
reduce the idea to its core, we will assume that emitters are static,
and we will also work without standard optimizations like MIS or
next event estimation. The following code fragment specifies a stan-
dard unidirectional path tracer to clarify all notation. It takes a ray
as input and returns the resulting accumulated radiance. The code
is heavily simplified and focuses on what is relevant for differen-
tiation: changes to the path throughput 𝛽 and the total radiance 𝐿
accumulated along the path.

1 def sample_path(ray):

2 𝐿 = 0, 𝛽 = 1

3 for i in range(N):

4 𝐿 += 𝛽 * 𝐿𝑒(...)

5 𝝎′, bsdf_value, bsdf_pdf = sample_bsdf(...)

6 𝛽 *= bsdf_value / bsdf_pdf

7 return 𝐿

Listing 1. Path tracer sketch, where 𝛽 and 𝐿 denote throughput and accu-
mulated radiance. 𝐿 is also an input of the adjoint pass discussed next.

The subsequent adjoint phase has the purpose of back-propagating
adjoint radiance 𝛿𝐿 along the same light path: this is the derivative
of radiance with respect to the optimization’s objective function,
which captures how the radiance along this specific path should
change to improve the objective’s current value. To do so, we must
sample the terms of the differential transport problem outlined in
Equation 5. Due to the simplifying assumption of static emitters,
this equation further reduces to

𝜕𝜋𝐿𝑜 (x,𝝎) =
∫
𝑆2
𝜕𝜋𝐿𝑖 (x,𝝎′) 𝑓𝑠 (x,𝝎,𝝎′)

+ 𝐿𝑖 (x,𝝎′) 𝜕𝜋 𝑓𝑠 (x,𝝎,𝝎′) d𝝎′⊥ . (6)

To recapitulate, the first term of this equation states that differential
radiation propagates according to a standard random walk, and the
adjoint phase simply handles this part using a loop. The second
term must be handled specially and requires backpropagating the
product of adjoint and incident radiance into the BSDF 𝑓𝑠 .

The function backward_grad(<expr>, grad_out) evaluates the
reverse-mode derivative of the expression <expr> to propagate a
gradient with respect to the expression’s output (grad_out) towards
the scene parameters, returning another gradient resulting from
this step. The following code fragment then realizes all steps of this
adjoint phase:

1 def sample_path_adjoint(ray, 𝐿, 𝛿𝐿):

2 𝛽 = 1

3 for i in range(N):

4 𝐿 -= 𝛽 * 𝐿𝑒(...)

5 𝝎′, bsdf_value, bsdf_pdf = sample_bsdf(...)

6 𝛿𝜋 += backward_grad(bsdf_value, 𝛿𝐿 ∗ 𝐿 / bsdf_value)

7 𝛽 *= bsdf_value / bsdf_pdf

8 return 𝛿𝜋

Listing 2. The adjoint phase takes 𝐿 as input and reverses certain operations
in sample_path() to propagate adjoint radiance 𝛿𝐿 to scene parameters.

Line 3 of the adjoint pass reconstructs the incident illumination
at the current vertex by subtracting emission, if present. This is the
inverse of line 4 in Listing 1. The resulting modified value 𝐿 still

includes the bsdf_value / bsdf_pdf ratio that was applied in line
6 of Listing 1.
Our goal is now to importance sample the term 𝐿𝑖 (...) 𝜕𝑓𝑠 (...)

of the differential scattering equation (6), for which we reuse the
existing sample 𝝎′ with density bsdf_pdf. This entails dividing
out the BSDF value but retaining the reciprocal density and back-
propagating the product of this quantity with the adjoint radiance
𝛿𝐿 into the scene parameters corresponding to the current BSDF 𝑓𝑠 .

Several aspects of this algorithm are remarkable: it is mathe-
matically equivalent to reverse-mode AD that normally requires a
complete program reversal including ample storage of intermediate
values. Yet, the loop of our adjoint pass retains its order, exploiting
the repeatability of the random walk along with a minimal use of
extra information (L) computed in a prior phase.

Both next event estimation and multiple importance sampling are
easily integrated into this framework by carefully reconstructing
the direct illumination at each vertex and performing the inverse of
the primal operations that are needed to accomplish this.
We note that Listing 2 involves a subtraction, which can lead

to floating point cancellation errors. This case could arise when a
path vertex has an extremely high contribution that dominates that
of other path vertices. When processing this vertex in the adjoint
pass, cancellation could cause 𝐿 to round to zero. Arguably, this
corresponds to a situation where the numerical accuracy of the
primary simulation is also suspect.

4.2 Attached Sampling Strategies
While the previously discussed method works well in a wide range
of situations, it cannot compute parameter derivatives related to
perfectly specular surfaces, as this would entail backpropagating
gradients through Dirac delta functions. This prevents optimizing
index of refraction, geometry, or surface normals of smooth conduc-
tors and dielectrics, including interesting applications like caustic
design or the inverse reconstruction of transparent objects [Lyu
et al. 2020].
Instead of differentiating the BSDF alone, we must consider its

behavior in relationship to the underlying sampling strategy and
track how perturbations of relevant scene parameters will influence
this directional sampling process. Sampling strategies in computer
graphics are normally based on inverse transform sampling that can
be understood as a change of variables to new coordinates u ∈ U
parameterizing the integration domain P via a mapping𝑇 : U → P,
where U = [0, 1]𝑛 is a unit-sized hypercube of suitable dimension.
The mapping x = 𝑇 (u) is constructed from a target density 𝑝 (x)
so that its Jacobian determinant satisfies |𝐽 (u) | = 𝑝 (x)−1. The re-
parameterized integral then takes the form

𝐼 𝑗 (𝜋) =
∫
U

𝑓𝑗 (𝑇 (u), 𝜋) |𝐽 (u) | du =

∫
U

𝑓𝑗 (𝑇 (u), 𝜋)
𝑝 (𝑇 (u)) du. (7)

Monte Carlo estimates of this integral will achieve low-variance if
𝑝 (x) ≈ 𝑓 (x). Good sampling strategies must necessarily depend on
the scene parameters 𝜋 to accomplish this by specializing the target
density and mapping to the properties of a given scene. We will add
an extra dependence on 𝜋 to 𝑝 and 𝑇 to capture this aspect.
Differentiating the re-parameterized integral yields an attached

differential sampling strategy, where samples are geometrically
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attached to the motion of 𝑇 (u, 𝜋) with respect to perturbations of
𝜋 :

𝜕𝜋 𝐼 𝑗 (𝜋) =
∫
U

𝜕𝜋

[
𝑓𝑗 (𝑇 (u, 𝜋), 𝜋)
𝑝 (𝑇 (u, 𝜋), 𝜋)

]
du. (8)

Applying the ideas of Section 4.1 poses additional challenges
compared to the previously discussed detached case. Consider a
perturbation of the shading normal or a material parameter at a
given surface interaction: this change will further propagate, influ-
encing the geometry of the remainder of this path. This will in turn
also change the value of subsequent BSDF and emission terms. It
is important to correctly account for these non-local dependencies
during differentiation to ensure unbiased gradient estimates. Fortu-
nately, it remains possible to follow the same core idea to develop
similar methods for the attached case.
To motivate our approach, let us apply the partial derivative to

the various terms in Equation (8):

𝜕𝜋 𝐼 𝑗 (𝜋) =
∫
U

𝜕𝜋 𝑓𝑗 (𝑇 (u, 𝜋), 𝜋)
𝑝 (...) − · · · du, (9)

where we have applied the quotient rule and only focus of the
numerator of the first resulting term. Using the vectorial chain rule,
this can be seen to equal

=

∫
U

𝜕𝜋 𝑓𝑗 (...) + 𝜕x 𝑓𝑗 (...) · 𝜕𝜋𝑇 (...)
𝑝 (...) − · · · du. (10)

This derivation shows how the numerator splits into a term that
tracks the change of the primal integrand with respect to 𝜋 , and the
following product of two Jacobian matrices expresses how changes
in the parameterization influence 𝑓𝑗 due to its dependence on the
light path vertices x. Section 1 of the supplemental material contains
further detail on these derivatives and their relationship to differ-
ential radiance. These transform-related derivatives constitute the
main change due to attached sampling strategies, and our approach
will be to similarly reconstruct them on the fly using a constant
amount of precomputed information generated by a prior phase.

In contrast to the previous algorithm, we therefore not only need
to track quantities related to the total accumulated radiance and
throughput, but also to the path geometry. In each iteration, we
spawn a ray according to the BSDF sampling strategy, and the
computed derivatives must then take into account how this new ray
will depend on the previous ray.

Suppose that (p0, p1, p2) are subsequent vertices on a light path,
where p2 was sampled given an incident ray p0 → p1, as illustrated
in Figure 3. We must then compute the Jacobian capturing the differ-
ential relationship 𝜕p2/𝜕p0 of these path vertices. Performed naïvely,
this would be a 6 × 6 matrix. However, as we are only interested
in rays originating on surfaces (or the camera), and directions are
normalized, we can reduce it to a 4 × 4 matrix by switching to a
2D parametrization using coordinates that leverage the available
tangential basis vectors at path vertices.

It is interesting to note that these derivatives can in principle be
computed using any kind of parameterization of the space of light
paths and rays, and we initially used a position-angle parameteriza-
tion of rays. In this case, the Jacobian matrices involve components
with incompatible units and different resulting scales, which can

p0

p1 p2

Fig. 3. The attached version of our method must consider how the geometry
of a light path changes with respect to infinitesimal perturbations of scene
parameters. Our method does so by tracking the differential relationship
of a subsequent path vertex p2 generated from an incident path segment
p0 → p1 using the combination of BSDF sampling routines and ray tracing.

cause poor numerical conditioning. Switching to a position-position
parameterization addressed this issue.

Pseudocode. Listing 3 contains the pseudocode of our attached
gradient evaluation technique following the same conventions previ-
ously outlined in Listings 1 and 2. Each loop iteration uses forward-
mode differentiation (via a function forward_grad()) to capture the
differential relationship of adjacent path vertices and reverse-mode
differentiation (via a function backward_grad()) to backpropagate
adjoint radiance into the scene parameter gradient.
Concretely, the function backward_grad(x, 𝛿) propagates the

gradient of the function’s output to the input parameters by evaluat-
ing the Jacobian product J⊺x 𝛿 using automatic differentiation. On the
other hand, the function forward_grad() takes an input variable
and several output variables and computes the Jacobian matrices
of all the output variables with respect to the input. This function
returns Jacobian matrices, while backward_grad() internally mul-
tiplies the Jacobian with vector. By J◦ we denote Jacobian matrices
of some output variable ◦ with respect to the current "ray". Here,
a ray is represented by the tuple of UV coordinates at its origin
and intersection location. For RGB values, e.g., the accumulated
radiance 𝐿, these Jacobians have 3 rows and 4 columns. The imple-
mentation keeps track of the derivative of the accumulated radiance,
path throughput and the next "ray". We denote these quantities by
J𝐿 , J𝛽 and Jray. For example, Jray contains the derivatives of the UV
coordinates at bounce 𝑖 and 𝑖 + 1, (𝑢𝑖 , 𝑣𝑖 , 𝑢𝑖+1, 𝑣𝑖+1), with respect to
the camera ray, represented by the tuple (𝑢0, 𝑣0, 𝑢1, 𝑣1). The first
pass then returns the accumulated radiance 𝐿 and its directional
derivative J𝐿 to be used in the adjoint phase.
Note that automatic differentiation is only used within the loop

body, and does not need to build an AD graph over loop iterations.
Our explicitly computed Jacobian matrices account for all derivative
information that is needed across loop iterations.

Near-specular scattering. We mainly motivated the attached case
from the viewpoint of handling ideally specular interactions, but
this approach may also be beneficial for near-specular scattering
involving materials with only a small amount of roughness. The
variance reduction properties of attached estimators are analyzed
in a concurrent article [Zeltner et al. 2021].
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def sample_path(ray):

𝐿 = 0, 𝛽 = 1

J𝐿 = 03,4, J𝛽 = 03,4, Jray = I4
for i in range(N):

𝐿 += 𝛽 * 𝐿𝑒(...)

wo, bsdf_value, bsdf_pdf = sample_bsdf(...)

bsdf_weight = bsdf_value / bsdf_pdf

ray′ = spawn_ray(wo, ...)

# Compute the directional radiance derivative

Jray′, Jbsdf, J𝐿𝑒 = forward_grad(ray, {ray′, bsdf_weight, 𝐿𝑒})

Jbsdf = Jbsdf @ Jray
J𝐿𝑒 = J𝐿𝑒 @ Jray
Jray = Jray′ @ Jray
J𝐿 += 𝛽 * J𝐿𝑒 + 𝐿𝑒 * J𝛽
J𝛽 = bsdf_weight * J𝛽 + 𝛽 * Jbsdf
𝛽 *= bsdf_weight

return 𝐿, J𝐿

def sample_path_adjoint(ray, 𝐿, J𝐿, 𝛿𝐿):

𝛽 = 1, Jray = I4
for i in range(N):

𝐿 -= 𝛽 * 𝐿𝑒(...)

𝝎′, bsdf_value, bsdf_pdf = sample_bsdf(...)

bsdf_weight = bsdf_value / bsdf_pdf

ray′ = spawn_ray(wo, ...)

Jray′, Jbsdf, J𝐿𝑒 = forward_grad(ray, {ray′, bsdf_weight, 𝐿𝑒})

Jbsdf = Jbsdf @ Jray
J𝐿𝑒 = J𝐿𝑒 @ Jray
Jray = Jray′ @ Jray

# Update the directional radiance derivative

J𝐿 -= 𝐿 / bsdf_val * Jbsdf + 𝛽 * J𝐿𝑒
J′
𝐿

= J𝐿 @ (Jray )−1

# Backpropagate gradients of the current BSDF value

𝛿𝜋 += backward_grad(bsdf_weight, 𝛿𝐿 ∗ 𝐿 / bsdf_weight)

# Backpropagate through shading frame and

# BSDF sampling calculation

𝛿𝜋 += backward_grad(ray′, 𝛿𝐿 @ J′
𝐿
)

𝛽 *= bsdf_weight

return 𝛿𝜋

Listing 3. Pseudocode of our attached backpropagation algorithm.

Practical considerations. We always perform three rendering steps:
the first computes an ordinary primal image and uses a pseudoran-
dom number seeding scheme that de-correlates it from the sub-
sequent two gradient-related evaluation steps. The need for this
separation to avoid bias was noted by Azinović et al. [2019]. The
primal image is then used to evaluate the objective function and
compute its gradient, which produces the adjoint image (i.e. the
derivative of the rendered image with respect to the optimization
objective) that we then backpropagate from the sensor to objects
with differentiable parameters. These two steps rely on the coupled
pair of algorithms presented earlier, which are perfectly correlated
in the sense that they visit the exact same sequence of path vertices.

The need to perform three instead of two rendering passes comes
at an extra cost, which means that our linear-time approach may

(a) Reference (b) Ours (w/o regularization)

(c) Ours (d) Conv. AD

Fig. 4. We show the effect of our random regularization of the ray Jacobian.
In this example, we computed the gradient of the surface normals of the
ridges on the glass cups. Without stochastic regularization, the diffuse
material of the wooden table produces singular Jacobians matrices, and the
resulting gradients are mostly invalid (NaN, shown as white). With a small
amount of regularization (𝜆 = 0.01), our gradient estimates are very close
to those computed using conventional automatic differentiation.

ultimately be slower than existing two-pass methods when the
problem to be solved is sufficiently simple so that lack of linear
computation time or constant memory usage are not bottlenecks.

Stochastic regularization. The Jacobian matrix relating adjacent
path segments is singular when the sampling strategy lacks a depen-
dence on the previous vertex. This case for example arises following
an interaction with a diffuse material, whose sampling strategy does
not depend on the incident direction.
We use the following simple regularization scheme to avoid nu-

merical failure during the inversion process: at each vertex, we add
a small amount of statistically independent noise with zero mean,
which does not bias the resulting gradients. In particular, we add
a diagonal matrix 𝜆 · I4 · sign (𝑢 − 1/2) to the ray Jacobian, where
𝑢 ∼ U(0, 1) is a uniform variate, I4 the 4 × 4 identity matrix and
𝜆 = 0.01 denotes a regularization weight. We again make sure to
use the exact same random variates in both of our computation
passes (i.e. the second and third passes according to the unbiased
evaluation scheme discussed above). By using the same noise matrix
in both passes, we ensure that our method remains unbiased. A
detailed proof is provided in Section 2 of the supplemental material.
The effect of this regularization is illustrated in Figure 4.
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Moving discontinuities. Section 3 introduced the assumption that
discontinuities, when present, do not depend on 𝜋 and are thus static
within the integration domain. A serious issue can arise when the
𝜋-dependent parameterization introduces an undesirable parameter
dependence in previously static discontinuities. Without additional
precautions, such a combination can then lead to in biased gradients.

The previously mentioned concurrent article [Zeltner et al. 2021]
studies this situation and proposes a combination with an auxil-
iary transformation that “slows down” the parameterization near
discontinuities to circumvent issues with bias. The auxiliary trans-
formation builds on the frameworks of Loubet et al. [2019] and Ban-
garu et al. [2020] and requires a nested Monte Carlo evaluation of a
convolution kernel that adds some implementation complexity and
computational cost. In practice, bias due to naïve attached sampling
may be acceptable given the simplicity and efficiency of the uncor-
rected approach. For example, Nimier-David et al. [2019, Section
4.3] demonstrate a working caustic design application that applies
AD to an entire specular chain, which is functionally equivalent an
attached sampler without corrections for moving discontinuities.

We refer to Zeltner et al. [2021] for details on discontinuity han-
dling and will pay no further attention to this aspect, as our focus
here is purely on algorithmic details like time and storage complex-
ity of reverse-mode attached derivatives.

4.3 Mathematical interpretation: Iterative Jacobian Inversion
The previously discussed method performs an iterative reconstruc-
tion of the incident illumination along with its directional derivative
in the attached case. We can further generalize this idea using an
abstract view that interprets sampling of a light path as the repeated
composition of a function ℎ. In an implementation, ℎ would repre-
sent the body of a for loop that takes the previous iteration’s state
as input to compute an updated set of state variables. In the basic
path tracer from Listing 1, the relevant loop state is comprised of
the value 𝐿 and throughput 𝛽 . The loop then evaluates

(𝐿(𝜋), 𝛽 (𝜋)) = ℎ(𝜋,ℎ(𝜋, ..., ℎ(𝜋, 𝐿0, 𝛽0))···)︸                             ︷︷                             ︸
𝑁

=ℎ (𝑁 ) (𝜋, 𝐿0, 𝛽0), (11)

where 𝐿0 = 0 and 𝛽0 = 1. In this particular example, the function
was defined as ℎ(𝐿, 𝛽) = (𝐿 + 𝛽 · 𝐿𝑒 (...), 𝛽 · 𝑓𝑠 (...)). For notational
clarity, we omit the division of the BSDF value 𝑓𝑠 (...) by the sam-
pling density. Using the chain rule, we can take the derivative of
Equation (11) with respect to the scene parameter 𝜋 :

𝜕𝜋 (𝐿(𝜋), 𝛽 (𝜋)) = 𝜕𝜋 [ℎ(𝜋,ℎ(𝜋, ..., ℎ(𝜋, 𝐿0, 𝛽0))···)]

=

𝑁∑︁
𝑘=1


𝑁∏

𝑗=𝑘+1
𝐽ℎ (𝐿𝑗 , 𝛽 𝑗 )

 𝜕𝜋ℎ(𝜋, 𝐿𝑘−1, 𝛽𝑘−1), (12)

where (𝐿𝑘 , 𝛽𝑘 ) = ℎ (𝑘 ) (𝜋, 𝐿0, 𝛽0). This expression can be evaluated
in different ways. Conventional AD techniques would store the
function evaluations after each iteration of the forward loop and
then compute the product of the Jacobians in reverse order. This
is for example how the backpropagation algorithm for neural net-
works [Rumelhart et al. 1986] operates. Alternatively, we could run
the computation in reverse and recompute quantities, which Gomez
et al [2017] demonstrate on a reversible residual network.

We choose a different approach: instead of inverting the primal
calculation, we invert the local Jacobian matrix relating the loop
state of adjacent iterations. This is feasible, as the involved quantities
are low-dimensional and the computation has a simple structure.
The same approach would clearly not scale to neural networks with
thousand-dimensional latent representations in intermediate layers.

The Jacobian 𝐽ℎ of the function ℎ is given by

𝐽ℎ =

(
1 𝐿𝑒 (...)
0 𝑓𝑠 (...)

)
, (13)

and we define 𝐽ℎ,𝑘 as product of 𝐽ℎ over the path suffix at vertex 𝑘 :

𝐽ℎ,𝑘 =

𝑁∏
𝑗=𝑘+1

𝐽ℎ (𝐿𝑗 , 𝛽 𝑗 ) =
(
1 𝐿𝑘,𝑁
0 𝛽𝑘,𝑁

)
. (14)

The subscript 𝑘, 𝑁 denotes quantities that are accumulated from
path vertex 𝑘 to 𝑁 . This shows that the indirect illumination term
that needs to be evaluated during backpropagation can be inter-
preted as an entry of the Jacobian product. Plugging this back into
the expression for 𝜕𝜋𝐿 in Equation (12), we obtain

𝜕𝜋 (𝐿(𝜋), 𝛽 (𝜋)) =
𝑁∑︁
𝑘=1

(
1 𝐿𝑘,𝑁
0 𝛽𝑘,𝑁

)
𝜕𝜋ℎ(𝜋, 𝐿𝑘−1, 𝛽𝑘−1)

=

𝑁∑︁
𝑘=1

(
1 𝐿𝑘,𝑁
0 𝛽𝑘,𝑁

) [(
0

𝛽𝑘−1

)
𝜕𝜋 𝑓𝑠 +

(
𝛽𝑘−1

0

)
𝜕𝜋𝐿𝑒

]
=

𝑁∑︁
𝑘=1

𝛽𝑘−1

(
1 𝐿𝑘,𝑁
0 𝛽𝑘,𝑁

) (
𝜕𝜋𝐿𝑒
𝜕𝜋 𝑓𝑠

)
. (15)

In practice, only the first component 𝜕𝜋𝐿 of the gradient is desired,
andwe ignore the derivative of the path throughput 𝛽 . Each iteration
of the adjoint pass in Listing 2 then accumulates one of the elements
of the previous sum into the scene parameter gradient. This equa-
tion now enables a new interpretation of the method presented in
Section 4.1: the incident radiance computed in a first forward pass
provides the Jacobian product 𝐽ℎ,0. As we now run our backward
pass and subtract the current emitted radiance, we are effectively
iteratively applying the inverse Jacobian matrix:

𝐽 −1
ℎ

=

(
1 −𝐿𝑒 (...)/𝑓𝑠 (...)
0 1/𝑓𝑠 (...)

)
. (16)

The throughput-related computation simplifies to a single division
by the current BSDF value.

4.4 Differentiable Delta Tracking
Path replay backpropagation unlocks the door to efficient reverse-
mode differentiation of volume transport based on unbiased null-
collision methods like delta tracking [Woodcock et al. 1965]. Such
methods alter the composition of the medium by introducing ficti-
tious (i.e., optically inactive) matter that enables free-flight sampling
via an unbiased rejection sampling process.

Differentiating such algorithms in reverse mode previously in-
volved three separate sources of difficulty: first, light paths in partic-
ipating media are generally much longer and can reach 100-1000s
of scattering interactions, exacerbating the difficulty of program
reversal. Second, null-scattering can introduce a large number of
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Fig. 5. Validation of gradients computed using detached sampling strategies: we visualize several types of parameter gradients in a somewhat construed
validation testcase that involves backpropagating the difference to a blurred version of the primal image. In the first row, we compute the gradient of the
diffuse albedo of the wooden floor. Only one dimension is shown in the case of multidimensional parameters like the albedo. The second row shows the
gradient of a roughness texture on the dragon. Finally, the last row shows the gradient of the normal map of the embossed coin. Our method and the quadratic
time version of radiative backpropagation match reference gradients obtained using conventional automatic differentiation. Biased RB can compute the
gradient of a diffuse texture albeit with an incorrect scale, and it produces gradients of the wrong sign for both roughness and normal maps.

additional null interactions that expand the size of the intermediate
program state even further. Third, null-scattering makes discrete
decisions that require additional precautions during differentiation.
The former two issues are easily addressed by switching to de-

tached or attached PRB with generalizations for volumes (e.g., scat-
tering by a phase function in addition to the BSDF). To resolve
the third issue, consider the null-scattering integral form of the
radiative transfer equation [Galtier et al. 2013; Kutz et al. 2017]:

𝐿𝑖 (x) =
∫ ∞

0
𝑝 (𝑡)

[
𝜎𝑎 (x𝑡 )

𝜎
𝐿𝑒 (x𝑡 )+

𝜎𝑠 (x𝑡 )
𝜎

𝐿𝑠 (x𝑡 )+
𝜎𝑛 (x𝑡 )

𝜎
𝐿𝑖 (x𝑡 )

]
d𝑡,

where we have omitted the dependence on 𝜔 for readability, 𝜎 is
the majorant on extinction 𝜎𝑡 = 𝜎𝑎 + 𝜎𝑠 evaluated at x + 𝑡𝜔 , and
𝜎𝑎, 𝜎𝑠 , 𝜎𝑛 denote the medium’s absorption, scattering, and null
scattering coefficient. The function 𝑝 (𝑡) = 𝜎 exp (−𝑡𝜎) is the free-
flight density of the majorant that we assume to be a constant that
does not participate in the differentiation process. Finally, 𝐿, 𝐿𝑒 ,
and 𝐿𝑠 are incident, emitted, and in-scattered radiance. We refer to
Novak et al. [2018] for a thorough discussion of this formulation. To
differentiate this integral, we use the following detached estimator:

⟨𝜕𝜋𝐿𝑖 (x)⟩ = 𝜕𝜋
[
𝜓𝑎 (x𝑡 ) 𝐿𝑒 (x𝑡 )

]
𝜓−1
𝑎 (x𝑡 ) H [𝑢 < 𝜓𝑎 (x𝑡 )]

+ 𝜕𝜋
[
𝜓𝑠 (x𝑡 ) 𝐿𝑠 (x𝑡 )

]
𝜓−1
𝑠 (x𝑡 ) H [𝜓𝑎 (x𝑡 ) ≤ 𝑢 < 𝜓𝑡 (x𝑡 )]

+ 𝜕𝜋
[
𝜓𝑛 (x𝑡 ) 𝐿𝑖 (x𝑡 )

]
𝜓−1
𝑛 (x𝑡 ) H [𝜓𝑡 (x𝑡 ) ≤ 𝑢], (17)

where the Heaviside function H equals 1 if the specified condition
is satisfied and 0 otherwise. The variable 𝑡 is sampled according to
𝑝 (𝑡), 𝑢 ∼ 𝑈 (0, 1), and 𝜓◦ (x) B 𝜎◦ (x)/𝜎 . Note that all functions 𝜓◦
and 𝐿◦ have an implicit dependence on 𝜋 . The particle proportions
𝜓◦ occur twice in each row, but they must only differentiated once
as derivatives involving the discrete choice between absorption and
(null-)scattering would severely bias the resulting estimator. Zeltner
et al. [2021, Section 3.2] discuss the reasons for this in further detail.

Practical implementations of this method will likely also build on
specialized direct illumination sampling strategies referred to as next
event estimation. One additional challenge that arises here is that
transmittance evaluation towards the sampled light position using a
method like ratio tracking [Novák et al. 2014] adds another recursive
loop over an unbounded number of scattering events. To correctly
differentiate this process, we rely on a second nested application
of PRB within the volumetric path tracer loop. Section 3 of the
supplemental material provides further details and pseudocode.

We have not yet experimented with attached versions of volume
transport estimators but consider them an interesting avenue for
future work, especially to handle the directional domain of the in-
scattering integral: light paths in forward-scattering media (𝑔 > .99)
are highly constrained and reminiscent of specular chains in the
surface case. Simple detached sampling strategies can be a poor
choice for such a directionally peaked integrand [Zeltner et al. 2021].

5 RESULTS
We turn to results and present correctness tests, several applications,
and performance evaluations. We evaluated our implementation in
a differentiable rendering system based on Mitsuba 2 [Nimier-David
et al. 2019] on a Intel i7-7800x workstation with a NVIDIA TITAN
RTX graphics card (23 GiB of RAM) and using OptiX 7.2 [Parker
et al. 2010] for hardware-accelerated ray tracing.
Gradients from detached sampling strategies. In Figure 5, we val-

idate the correctness of our method by comparing gradients com-
puted using detached sampling strategies to conventional automatic
differentiation and both biased and unbiased RB variants. This figure
provides further demonstration that biased RB generates gradients
with an incorrect sign. This effect is particularly pronounced when
the directional distribution of incident radiance plays a strong role,
for instance when optimizing normal or roughness maps.
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Fig. 6. In this example, we compute gradients with respect to the dragon’s subsurface scattering albedo. This represents a typical case where long paths with
over a hundred scattering events must be simulated to faithfully capture the material appearance. In (b), we show how the appearance would degrade if we
excluded higher order bounces. We then compute the gradient of the albedo using conventional automatic differentiation, unbiased radiative backpropagation
(RB), and our new unbiased method. Despite rendering the scene only at 640 × 360 pixels and 1 sample per pixel, conventional AD quickly exhausts the
available memory of a TITAN RTX GPU. Runtime of unbiased RB grows quadratically with path length and becomes prohibitively slow when many scattering
events are considered. In contrast, our method performs unbiased estimates using a constant memory footprint and only a linear increase in computation time.
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Fig. 7. Similar to the detached case in Figure 5, we now visualize the gra-
dients of attached sampling strategies that track differential changes of
the path geometry with respect to perturbations of the scene parameters.
Parameter optimization of perfectly specular objects requires this approach.
The example in the first row shows a magnifying glass with curvature mod-
eled using a normal map. The second scene has normal map on an indirectly
observed metallic torus, and the last row uses a normal map to model the
profile of the two glass cups.

Gradients from attached sampling strategies. Conversely, Figure 7
shows gradients produced by attached sampling strategies. The nor-
mal map gradients were computed using paths of length 12 using
128 samples per pixel. Specular interreflection alongwith both reflec-
tion and refraction makes it possible to reach each texture-position
using various different path configurations. This leads to a relatively
high amount of variance compared to the previous case. Radiative
backpropagation does not support this type of computation and will
return a zero-valued gradient in all three cases.

Subsurface scattering. Our method outperforms prior work in
scenes that are characterized by light paths with many scattering
events. Figure 6 showcases the asymptotic behavior of gradient
evaluation with respect to the subsurface scattering albedo of a
dielectric object with homogeneous internal scattering. The high
average path length makes both recursive radiative backpropagation
and conventional automatic differentiation approaches unsuitable:
the former suffers from quadratic computational cost to recursively
estimate the incident illumination, while the latter requires storage
of intermediate program state for differentiation that grows linearly
with path length and quickly exhausts all available GPU memory.

Heterogeneous volume optimization. In Figure 9, we use ourmethod
to optimize a heterogeneous volume using delta tracking. The large
number of null scattering events makes any method with a super-
linear dependence on path length impractical. Delta tracking maps
extremely poorly to wavefront style rendering, so conventional AD,
which runs a big wavefront of rays, is unable to complete even a
single iteration. Figure 1 showcases a similar albedo and density
optimization under difficult illumination conditions.

Performance evaluation. We evaluate the computation time and
memory requirements of both our detached and attached derivatives
in Figure 8. The results confirm that our method and radiative
backpropagation both use a constant amount of memory, which can
be substantially lower than memory requirements of conventional
AD. While we build on a relatively optimized AD implementation,
this approach still uses in excess of 10 GiB of memory to compute a
small number of gradient samples in several simple tests.

Optimization using attached sampling. Figure 10 shows how at-
tached PRB can be used to optimize the normal map of a glass slab.
Our method matches the results achieved using conventional AD.

6 CONCLUSION AND FUTURE WORK
We presented a new linear-time and constant-memory approach
to differentiate the image formation process of physically-based
rendering. Our method has a cost that is similar to a biased method
presented in previous work, but its unbiased nature makes it more
reliable in many types of simulations.
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Fig. 8. We compare the runtime and memory usage of differentiable rendering in multiple example scenes, separating the time spent in the primal and two
differentiation-related passes. The primal pass uses a larger number (4 ×) of samples compared to the adjoint passes, which has a positive effect on gradient
variance [Azinović et al. 2019]. In our method, the first adjoint pass refers to the precomputation of temporary information (radiance estimate, ray Jacobians)
consumed by the final adjoint pass that accumulates scene parameter derivatives.
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Fig. 9. We optimize the density of a heterogeneous volume using delta track-
ing and multiple methods at roughly equal time. The number of sampled
medium interactions makes both conventional automatic differentiation
(conv. AD) and unbiased radiative backpropagation (RB) completely infeasi-
ble. Conventional AD fails to complete even one iteration within a timespan
of 45 minutes. Our method and biased RB are both significantly faster. Our
method seems converge slightly more reliably than biased RB.

We also show that this approach generalizes to the more com-
plex case of attached sampling strategies that track the differential
dependence of Monte Carlo importance sampling on scene parame-
ters, enabling differentiation of degenerate BSDFs containing Dirac
delta functions. Both methods use a constant amount of memory,
which we expect to be crucial when optimizing large scenes. We
also expand on previous work targeting volumetric appearance re-
construction and are the first to solve this problem using unbiased
delta tracking. The advantages over ray marching match those ob-
served in primal rendering, and we hope that this possibility will
inspire inverse rendering to similarly shift towards unbiased volume
rendering methods.
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