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1 RELATION TO VOLTERRA INTEGRAL FORMULATION
For an exponential transmittance, i.e. 𝑓 (𝜏) = exp(−𝜏), our inte-
gral formulation matches the Volterra integral used by Georgiev
et al. [2019]. Their formulation was derived directly from the RTE,
instead of just using calculus. However, it can be transformed into
ours as follows:
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Their paper then uses the Taylor series of the exponential func-
tion to write the transmittance as an infinite sum. It turns out that
recursively expanding a function using the fundamental theorem
of calculus is one of several ways to derive the Taylor series of a
function in the first place.

2 RAY MARCHING ALGORITHM
We use ray marching to estimate the transmittance by our model.
Our transmittance model was defined to be:
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To evaluate the transmittance, we need to approximate the value of
this integral. We can do that by applying a Riemann summation:
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where for convenience we defined the transmittance after 𝑖 −1 steps
in the summation as T𝑖−1 (with T0 = 1). However, if one tries to
use this formulation one encounters an issue. Our transmittance
model was derived using the fundamental theorem of calculus, but
the fundamental theorem of calculus does not hold under a basic
Riemann summation. This can be fixed by also using a discrete
version of the derivative term in the integrand. We use a finite
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difference approximation with the step size of 𝜎tΔstep:
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Using the extinction as the finite difference offset is convenient, as
the division by it will then cancel out with the 𝜎tΔstep term in the
original Riemann sum:
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In the last step, we arrive at a telescoping sum. This means that
we can also write the ray marching algorithm as a simple recursive
function:
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Each iteration in the ray marching algorithm then updates the value
of T based on its previous value and the current values for 𝜎t and 𝛾 .

3 INVERSE TRANSMITTANCE KERNEL
To evaluate our heterogeneous transmittance model, we need to
compute the inverse of the transmittance kernel 𝑓 (𝜏,𝛾) with respect
to its first argument. The simple form of 𝑓 allows to write the inverse
explicitly using the Lambert W function:
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Being able to compute the inverse transmittance function is not
only necessary to evaluate our transmittance formulation, but also
allows to efficiently optimize the medium parameters using gradient
descent.
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4 RECIPROCITY
Our model does not enforce reciprocity. While we provide some
results in the main paper, we show some additional evaluation in
Figure 1.
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Fig. 1. In this figure, we plot the absolute difference between evaluating the
transmittance across two voxels from either direction. The error depends on
the medium parameters 𝜎t and 𝛾 . We show two plots over the extinction
values of the two voxels, each for different settings of transmittance modes.
The difference is maximized if the two adjacent voxels have completely
opposite transmittance modes (𝛾0 = 0 and 𝛾1 = 1), and gets smaller as the
difference in transmittance mode decreases. If both voxels have the same
transmittance mode, the difference goes to zero. The error also goes to zero
as the voxels become either fully transparent or fully opaque.

5 OPTIMIZATION CONVERGENCE
The optimization convergence for prefiltering multiple scenes is
shown in Figure 2. It is fairly uniform and does not suffer from
saddle points. The loss achieved using our non-exponential model
is significantly lower for scenes with many opaque surfaces (such as
"Checkerboards" and "City building"), while performing comparably
to the exponential model for aggregate scenarios (such as "Trees"
scene). This is expected, as our model is targeted at improving the
representation of scenes with opaque surfaces.

6 VOLUME ACCESS STATISTICS
In the following table we provide additional statistics on the amount
of voxel data accessed at render time. This shows that a sparse
voxelization of the scene scales favorably as the resolution increases.

Resolution 16 32 64 128

City building 153.1 204.9 231.1 257.2
City 97.7 102.6 128.3 161.0
Trees 122.9 177.9 242.5 283.9

Checkerboards 230.2 291.9 288.8 310.4
Fractal 269.1 347.8 474.4 532.7
Plane 126.5 125.9 152.1 150.1

Table 1. The amount of non-empty voxel data accessed per sample for
different scenes and resolutions. The reported numbers are average number
of bytes accessed while rendering different views of the scene. The data is
measured per sample, using multiple scattering and next event estimation.
These measurements show that the growth in data access size is sublinear
as the volume resolution increases.
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Fig. 2. Convergence plot of the 𝐿1 loss during optimization across different
scenes at a resolution of 643. The thick lines represent the loss values aver-
aged across 40 iterations. We found the convergence behavior to be fairly
uniform across all the scenes and resolutions we tested.
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