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Fig. 1. Left: Consider the fraction of unoccluded rays in two flatland scenarios involving particles generated by a Poisson process (top) and an opaque
surface (bottom). The former leads to an exponential decay that is the standard model underlying most existing volume rendering techniques. We consider a
generalized notion of transmittance that also supports the unusual linear decay profile exhibited by the surface case. Right: We perform a similar experiment
in a more complex scene by tracing rays within thick beams (middle) and tracking their free-flight distance. The distributions resulting from the three beams
are plotted on the right. Hard surfaces induce linear transmittance (purple), while unstructured geometry like foliage resembles an uncorrelated medium
that yields exponential transmittance (red). A beam that first traverses the trees and then a hard surface (green) encounters both linear and exponential
transmittance. We also show a parametric fit (dotted plots) using either an exponential or linear model, or piecewise combination of the two in case of the
mixed example.

We introduce a novel transmittance model to improve the volumetric rep-
resentation of 3D scenes. The model can represent opaque surfaces in the
volumetric light transport framework. Volumetric representations are useful
for complex scenes, and become increasingly popular for level of detail
and scene reconstruction. The traditional exponential transmittance model
found in volumetric light transport cannot capture correlations in visibility
across volume elements. When representing opaque surfaces as volumetric
density, this leads to both bloating of silhouettes and light leaking artifacts.
By introducing a parametric non-exponential transmittance model, we are
able to approximate these correlation effects and significantly improve the
accuracy of volumetric appearance representation of opaque scenes. Our
parametric transmittance model can represent a continuum between the
linear transmittance that opaque surfaces exhibit and the traditional expo-
nential transmittance encountered in participating media and unstructured
geometries. This covers a large part of the spectrum of geometric structures
encountered in complex scenes. In order to handle the spatially varying trans-
mittance correlation effects, we further extend the theory of non-exponential
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reverse-mode gradient computation. Applying our model to optimization
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1 INTRODUCTION
Photorealistic representations of digital scenes require significant
detail in both geometry and textures and can easily exceed the allot-
ted storage or rendering budget. When the scene is observed from
different positions, the level of detail may be grossly inappropriate,
with an entire forest or city block visible in a small image region.
Level of detail (LoD) techniques are therefore essential [Luebke et al.
2002] and widely used to represent complex photorealistic scenes in
production environments [Schwank et al. 2016]. This is especially
important for mobile and wearable augmented and virtual reality
(AR/VR) devices, where immersion is paramount and resource limits
place stringent requirements on rendering efficiency [Kaplanyan
et al. 2019].

On the other hand, scalable scene representations that are purely
based on decimating triangle meshes cannot efficiently filter the
appearance of fine structures, such as tree leaves, where accurately
modeling of partial visibility is required. Ultimately, at farther dis-
tances, any geometric structure only achieves partial coverage at the
sub-pixel level and can be more efficiently approximated using a vol-
umetric representation [Loubet and Neyret 2017]. This approach has
also become commonplace for modeling captured scenes [Lombardi
et al. 2019; Mildenhall et al. 2020].
However, one challenge is that the volumetric light transport

theory behind this representation is originally derived to model
absorption and scattering of a medium consisting of identically
distributed and uncorrelated microscopic particles, but not opaque
surfaces. The assumption of uncorrelated particles results in an
exponential transmittance function. This exponential transmittance
model is well suited for unstructured content such as the leaves
of a tree, but it breaks down for structured and opaque geometry
where the assumption of uncorrelated particles is violated. A distin-
guishing property of surfaces is their ability to be fully opaque, i.e.,
impenetrable to light, which is not possible with classic exponential
volumetric light transport theory. When an opaque object is mod-
eled as an exponential volume, a low density leads to a significant
portion of light leaking through the surface. Increasing the volume
density to compensate leads to bloated silhouettes and an overly
opaque appearance of semitransparent parts of the model. Volumet-
ric modeling of scenes containing both opaque and semitransparent
elements remains a fundamental challenge in current volumetric
modeling approaches.
In this paper, we build on the observation that approximating

the transmittance behavior of an arbitrary scene requires a non-
exponential transmittance model, as demonstrated in Figure 1. We
build on the recent advances in correlated and non-exponential light
transport theory [Bitterli et al. 2018; Jarabo et al. 2018] to improve
the volumetric representation of 3D scenes. Our novel transmittance
model captures the wide spectrum of transport behaviors induced by
geometric configurations ranging from completely opaque surfaces
to unstructured geometric aggregates. This allows to represent the
whole scene in a single volumetric form while efficiently handling
all scene elements within a unified light transport framework. We
demonstrate this efficiency by achieving state-of-the-art results in
multiple applications, such as appearance prefiltering (Figure 2). By
using a unified volumetric framework to model the entirety of the

scattering in a scene, we can avoid the problem of separating the
scene into partitions modeled using volumetric or surface scattering.
A purely volumetric representation can also simplify the rendering
algorithm.
Volumetric scene representations have recently gained signifi-

cant momentum for inverse rendering applications [Lombardi et al.
2019; Mildenhall et al. 2020]. A differentiable renderer can be used
to reconstruct a real scene by optimizing a volumetric scene rep-
resentation to match reference photographs. Using a volumetric
representation results in a more convex optimization problem than
directly optimizing surface geometries. The resulting volume param-
eters can be easily stored in a neural network or a simple (uniform)
grid. The volumetric scene representation is smooth and, in con-
trast to surface rendering, does not require any special treatment of
visibility derivatives [Li et al. 2018].

We show that our non-exponential transmittance formulation
can be useful for various tasks that require efficient volumetric
representation of an opaque scene, including, prefiltering for level
of detail, scene reconstruction using differentiable rendering, and
neural rendering [Mildenhall et al. 2020]. In summary, our core
contributions are:

• a unified volumetric representation that handles both opaque
surfaces as well as aggregate geometries within a single volu-
metric light transport theory

• a new practical parametric model for heterogeneous non-
exponential transmittance to account for correlations in a
continuum from opaque to aggregate geometric configura-
tions

• a new scene appearance prefiltering method based on our
unified volumetric representation and a robust scene-scale
parameter optimization for appearance prefiltering

• efficient image-based volumetric reconstruction of complex
scenes using differentiable and neural rendering

In the remainder of the paper, we will first introduce our volumet-
ric representation and transmittance model. We then demonstrate
and discuss the application of our model to appearance prefiltering
and image-based reconstruction.

2 RELATED WORK
Volumetric light transport is described by the radiative transfer equa-
tion (RTE) [Chandrasekhar 1960], which relates physical volume
parameters to the scattering of radiance. The RTE is typically solved
by using Monte Carlo integration. We refer to the state-of-the-art
report by Novák et al. [2018] for a comprehensive review of the vast
number of recent volume rendering techniques. In the following we
will discuss related work on level of detail, non-exponential media,
microflake theory and inverse rendering.

Volumetric appearance prefiltering for level of detail. Reducing the
scene complexity by converting opaque surfaces into a volumetric
representation has been a long standing and attracting direction
in the field of level of detail [Crassin et al. 2011]. It is easy to fil-
ter a scene into a volumetric representation with a hierarchy of
scales (e.g., an octree). In its hierarchical form, it allows to effi-
ciently bound the per-pixel rendering complexity by choosing the
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Fig. 2. Prefiltered rendering of a complex scene (13.8 million triangles) at different resolutions. In each rendering, the original scene is represented as a
volume with a voxel grid resolution corresponding to the image resolution. Our method reproduces the appearance of the ground truth reference, while the
state-of-the-art Hybrid LoD [Loubet and Neyret 2017] method has difficulties modeling the scene’s transmittance function leading to less accurate results. The
original scene consists of 750MB of geometry data and 350MB of textures. Our volumetric representation compresses this down to 4.9MB (220x compression)
for a resolution of 1283, and even further at lower resolutions. All results are rendered using global illumination.

prefiltered scale proportionally to the pixel’s footprint. The ren-
dering of a volumetric representations can be accelerated by using
sparse data structures [Crassin et al. 2009] and empty space skip-
ping [Hadwiger et al. 2018; Morrical et al. 2019]. Beyer et al. [2015]
provide an overview of efficient GPU volume rendering techniques
used in scientific visualization.
The main challenge with representing surfaces as participating

media is in preserving their opaqueness as well as thin structures.
This makes volumetric representations suffer either from bloated
appearance (density is too high) or light leaking (density is too low),
often leading to both at different viewing directions. In order to
reduce this bloating and light leaking, Heitz et al. [2012] used a per-
voxel, implicit plane to compute a view-dependent coverage mask.
Volumetric models have also been used to prefilter the appearance
of granular media such as snow and sand [Meng et al. 2015; Moon
et al. 2007; Müller et al. 2016].
The state-of-the-art method for general, appearance-preserving

LoD is the hybrid approach proposed by Loubet and Neyret [2017].
It performs a heterogeneous simplification of a scene by labelling
parts of a surface mesh to use either a geometric or a voxelized volu-
metric representation at every rendering scale. While their method
can achieve good results for both opaque geometry (e.g., a tree
trunk) and aggregate geometry (e.g., tree leaves), this binary classi-
fication is an ill-posed problem, as there is a smooth transient phase
between surface-like and volumetric appearance. Moreover, their
binary classification algorithm is based on a heuristic considering
local mesh topology, and can misclassify complex, unstructured
geometry, resulting in opaque surfaces appearing semitransparent,
as shown in Figure 2.

Non-exponential transport. Accounting for visibility correlation
across particles or, as in our case, geometry is a challenging prob-
lem and has only recently been investigated explicitly in computer
graphics. Bitterli et al. [2018] introduce a reciprocal path integral
formulation to allow the use of non-exponential transmittance func-
tions in participating media with correlated particles. Concurrent
work by Jarabo et al. [2018] extends the non-exponential general-
ized Boltzmann equation (GBE) to be used in a rendering algorithm,

enabling to handle boundary surfaces. D’Eon [2018] introduced a
weakly reciprocal non-exponential rendering formulation and inves-
tigated diffusion approximations [d’Eon 2019] and binary mixtures
of scatterers [d’Eon 2019]. Several previous works [Bitterli et al.
2018; Davis and Mineev-Weinstein 2011; Guo et al. 2019; Jarabo
et al. 2018] have introduced parametric families of non-exponential
transmittance functions. These parametric models mostly cover the
space of transmittance functions which fall off less quickly than the
exponential function (e.g., due to clumping of medium particles).
However, it is essential for our method to cover the spectrum be-
tween linear and exponential transmittance, which is not covered by
these models. In this paper, we introduce an integral transmittance
framework, that allows to cover the spectrum between exponential
and linear transmittance behavior. We apply it to the problem of
representing opaque surfaces as participating media.

Microflake theory. The appearance of a participating medium
is not only determined by the transmittance, but also by the an-
gular distribution of scattering, described by the phase function.
Jakob et al. [2010] generalized the radiative transfer equation to
introduce anisotropic microflake phase functions, which are the
volumetric analog of microfacet BSDFs used in surface rendering.
The microflake model is widely used for items such as woven fabric,
since it very accurately preserves such appearances at even very
fine scales [Zhao et al. 2012]. Heitz et al. [2015] introduced the
SGGX microflake distribution, which enables practical and compact
microflake representation of surfaces for appearance prefiltering.

Inverse and neural rendering. Volumetric representations have
been popular for reconstructing 3D scenes from reference images.
Gkioulekas et al. [2016] used image-based acquisition to recon-
struct volumes (e.g., smoke), while accounting for multiple scatter-
ing. Zhao et al. [2016] applied differentiable volume rendering to
the problem of downsampling volume parameters. Recently, Lom-
bardi et al. [2019] used a volumetric representation to model facial
performances. Volumetric representations have also recently been
used to allow re-rendering under novel illumination conditions [Bi
et al. 2020a,b]. Recent progress on differentiable rendering enables
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brute-force gradient descent optimization of heterogeneous vol-
umes using differentiable path tracing [Nimier-David et al. 2019]. A
differentiable rendering approach has also been proposed to opti-
mize the transmittance of a 3D printed light field display [Zheng
et al. 2020]. Lately, neural radiance fields (NeRF) [Mildenhall et al.
2020] introduced a seminal compact volumetric scene representa-
tion represented by a neural network. The method reconstructs
volumetric density and appearance from a set of reference views
using classical participating media representation with exponential
transmittance model. There have been multiple follow up works
that utilize this representation for various tasks, such as relighting.
In our work, we also demonstrate how our new transmittance model
can be used with gradient descent to optimize the volumetric scene
representation.

3 BACKGROUND

3.1 Transmittance
Our work focuses on representing arbitrary scenes in the volumetric
rendering framework by introducing a new transmittance model.
In the following, we recapitulate the definition of the transmittance
and how it is connected to volumetric scene representation.
The transmittance function T(x, y) of a participating medium

describes the fractional visibility between two points x and y. In the
most general case, the transmittance function maps two 3D points
to a scalar. By definition, it is non-increasing, attaining values in the
interval [0, 1], and reciprocal, i.e., T(x, y) = T(y, x). If the medium
is made up of microscopic, uncorrelated particles, the transmittance
follows the Beer-Lambert law and can be expressed as:

T(x, y) = exp

(
−

∫ ∥x−y∥

0
𝜎t (𝑡) d𝑡

)
, (1)

where 𝜎t is the extinction coefficient of the medium. The extinc-
tion coefficient is the differential probability of interacting with
a medium particle. We define 𝜎t (𝑡) as a shorthand notation for
𝜎t

(
x + y−x

∥y−x∥ 𝑡
)
, i.e., the spatially varying extinction coefficient eval-

uated at a distance 𝑡 on the segment between x and y. The inner
integral over extinction coefficients is also called the optical depth 𝜏 .

Non-exponential transmittance functions have recently been in-
troduced [Bitterli et al. 2018; Jarabo et al. 2018] to handle more
general cases of participating media, such as crystals, fabric, or
water droplets formed in clouds, where microparticles have some
structure and correlation. In particular, Jarabo et al. [2018] discuss
how particles aligned in certain grid structures give rise to a linear
transmittance function and show example renderings using homo-
geneous media. When representing a complex opaque 3D scene as
a volumetric representation, transmittance can generally take one
of two main modes, as shown in Figure 1: classic exponential mode
(e.g., with unstructured geometry, like leaves), as well as linear mode
(e.g., when hitting a planar opaque surface). In different parts of
the scene, transmittance may vary continuously between these two
extremes. Therefore, we build on the prior work on non-exponential
media and extend it to non-homogeneous transmittance, where the
transmittance behavior can change from one region of the medium
to another, in order to handle correlations that occur in opaque
3D scenes.

3.2 Volumetric Light Transport
To render images with volumetric light scattering, the transmittance
function needs to be inserted into the volume rendering equation,
which is derived from the radiative transfer equation (RTE) [Chan-
drasekhar 1960]. The standard RTE models the scattering due to
uncorrelated, exponential media. In the following, we only consider
non-emissive volumes. Assuming that the next surface or volume
boundary is at a distance 𝑧 from the current location in the medium,
the outgoing radiance at a location in the volume can be expressed
as as an integral over distance traveled in the medium:

𝐿𝑜 (x,𝝎𝑜 ) =
∫ 𝑧

0
𝛼 (x𝑡 )𝜎t (x𝑡 )T(x, x𝑡 )𝐿𝑠 (x𝑡 ,𝝎𝑜 ) d𝑡+T(x, x𝑧)𝐿𝑜 (x𝑧 ,𝝎𝑜 ),

(2)

where T is the transmittance function, 𝛼 is the medium’s albedo and
𝐿𝑠 is the inscattered radiance modulated by the phase function 𝑓𝑝 ,

𝐿𝑠 (x,𝝎𝑜 ) =
∫
𝑆2

𝑓𝑝 (x𝑡 ,𝝎𝑜 ,𝝎𝑖 )𝐿𝑖 (x𝑡 ,𝝎𝑖 ) d𝝎𝑖 . (3)

To render images using path tracing, we construct light paths by
alternating between sampling the distance to the next scattering
event, the free-flight distance, and the direction of the ray after
scattering. In an exponential medium, the free-flight distance is
sampled proportionally to 𝜎t (x𝑡 )T(x, x𝑡 ). The scattering direction
can be sampled according to the phase function.

3.3 Non-Exponential Transport
The previously described volume rendering equation assumes the
transmittance function to be exponential. One key observation
made in previous work [Bitterli et al. 2018; d’Eon 2018; Jarabo et al.
2018] is that simply replacing T by an arbitrary function is not en-
ergy preserving. The solution to that issue lies in realizing that the
term 𝜎t (x𝑡 )T(x, x𝑡 ) inside the integral in Equation 2 is exactly the
free-flight distance probability density function of the exponential
medium. Physically, the transmittance is the probability of a pho-
ton traversing a region of space without collision. The free-flight
distance PDF can therefore be obtained as the negative derivative
of the transmittance T. That T is a factor in that term is simply due
to it being an exponential function. Moving to a non-exponential
transmittance, this whole term has to be replaced by the associated
free-flight distance PDF, as opposed to merely replacing the function
T in the integral. Denoting the free-flight distance PDF by Tpdf , we
then obtain the following volume rendering equation:

𝐿𝑜 (x,𝝎𝑜 ) =
∫ 𝑧

0
𝛼 (x𝑡 )Tpdf (x, x𝑡 )𝐿𝑠 (x𝑡 ,𝝎𝑜 ) d𝑡 + T(x, x𝑧)𝐿𝑜 (x𝑧 ,𝝎𝑜 ).

(4)

This simple formulation of the rendering equation has one caveat:
If we want the light transport to be reciprocal, the transmittance
function and free-flight distance distribution need to be different
if the path starts on a surface or medium boundary [Bitterli et al.
2018; d’Eon 2018]. Our non-exponential transmittance formulation
is aimed at allowing scenes to be described as a volume in a unified
way. Therefore, for the following we assume this simplified, non-
reciprocal model.
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4 HETEROGENEOUS NON-EXPONENTIAL
TRANSMITTANCE

4.1 Transmittance Model
In this section, we present our novel heterogeneous non-exponential
transmittance formulation. In previous work on non-exponential
media, the transmittance function is assumed to be parametric on
the extinction 𝜎t (𝑡) and is fixed throughout the medium. The het-
erogeneity model proposed by Bitterli et al. [2018], similar to Cam-
minady et al. [2017], expresses the transmittance in a heterogeneous
medium as

T(x, y) = 𝑓 (𝜏) = 𝑓

(∫ ∥x−y∥

0
𝜎t (𝑡) d𝑡

)
, (5)

where 𝑓 is the transmittance function, the extinction 𝜎t is a spatially
varying function evaluated at distance 𝑡 along the segment between
x and y; and 𝜏 is the optical depth.

This formulation, while being limited, has the advantage that it
naturally fits into a reciprocal rendering framework and for some
special transmittance functions even allows for unbiased estimation
of the transmittance. However, as a limitation, it does not allow to
continuously vary the transmittance behavior inside of a medium.
This is necessary if we want to be able to capture different trans-
mittance modes present in a single scene. Note that subdividing the
scene into homogeneous regions with different non-exponential
transmittances would not solve this problem, as this would be re-
stricted to using a voxel grid representation with nearest neighbor
interpolation. Jarabo et al. [2018] discuss handling heterogeneous
volumes in a such a way, but also acknowledge its limitations and
do not provide a practical algorithm.
Our goal in the following is to replace the transmittance func-

tion 𝑓 by a spatially varying function. For scene representation,
we are interested in the spectrum between exponential and linear
transmittance. Conceptually, exponential transmittance is the con-
sequence of the participating medium consisting of microscopic
particles with uncorrelated locations. Previous work [Caglioti and
Golse 2003; Jarabo et al. 2018] showed that a linear transmittance
can theoretically be achieved by particles placed in a regular grid
or crystal-like pattern. Such models could potentially be useful to
form a direct connection from the scene’s geometry to medium
parameters. However, it seems to be difficult to smoothly transition
from a linear to an exponential transmittance using such theoreti-
cal scatterer distributions. Further, recent progress in differentiable
rendering makes it appealing to simply fit a parametric model by
minimizing a loss function. Therefore, we focus on building a para-
metric model that can represent the desired appearance space. We
then later show how its parameters can be optimized efficiently.
Since we need to capture the full spectrum from linear to exponen-
tial transmittance, we base our model on a linear combination of
the two. We define a transmittance function

𝑓 (𝜏,𝛾) = 𝛾 exp(−𝜏) + (1 − 𝛾)max(0, 1 − 𝜏/2), (6)

where 𝛾 varies between 0 and 1. We will refer to this parameter as
transmittance mode. The division by two in the linear transmittance
ensures that exponential and linear transmittance have the same
mean free path.

Given this transmittance function, we need to be able to vary 𝛾
spatially. In the following, we present a novel transmittance frame-
work that enables this. The derivation of the framework is indepen-
dent of the concrete form of 𝑓 . We construct our model such that it
satisfies the following requirements:

(1) The formulation needs to be an extension of the traditional
exponential transmittance and previous heterogeneous non-
exponential transmittance formulations

(2) The transmittance function needs to be non-increasing
(3) The transmittance function should be continuous for contin-

uously varying parameters
(4) Evaluating the transmittance should have similar memory

and computational requirements as conventional heteroge-
neous media

With these requirements, we do not make any explicit assump-
tions about the correlation throughout the medium. We also do
not strictly force the representation to be reciprocal. Our goal is to
merely introduce the additional degree of freedom to spatially vary
the transmittance behavior 𝑓 . In order to achieve this, we write the
transmittance as a recursive integral over transmittance function
derivatives:

T(x, y)=1 +
∫ ∥x−y∥

0

𝜕𝑓

𝜕𝜏

(
𝑓 −1 (T(x, x𝑡 ), 𝛾 (𝑡)) , 𝛾 (𝑡)

)
𝜎t (𝑡) d𝑡 (7)

This formulation satisfies requirements (1) – (4), as we explain
in the rest of this section and in Section 4.2. In particular, to show
that requirement (1) holds, and to provide justification for our for-
mulation, we first consider a constant transmittance mode, i.e.,
𝑓 (𝜏,𝛾) = 𝑓 (𝜏). In that case, we can directly derive our formula-
tion from the previous model (Equation 5):

T(x, y) = 𝑓

(∫ ∥x−y∥

0
𝜎t (𝑡) d𝑡

)
= 1 +

∫ ∥x−y∥

0

𝜕

𝜕𝑡

[
𝑓

(∫ 𝑡

0
𝜎t (𝑠) d𝑠

)]
d𝑡

= 1 +
∫ ∥x−y∥

0

𝜕𝑓

𝜕𝜏

(∫ 𝑡

0
𝜎t (𝑠) d𝑠

)
𝜎t (𝑡) d𝑡

= 1 +
∫ ∥x−y∥

0

𝜕𝑓

𝜕𝜏

(
𝑓 −1 (T(x, x𝑡 ))

)
𝜎t (𝑡) d𝑡 .

The first step uses the fundamental theorem of calculus, the second
step applies the chain rule, and in the third step we substitute the
optical depth integral using the original transmittance definition,
i.e.,

∫ 𝑡

0 𝜎t (𝑠) d𝑠 = 𝑓 −1 (T(x, x𝑡 )). Georgiev et al. [2019] used a similar
integral formulation to derive new transmittance estimators for
exponential light transport. Our model is closely related to that
formulation, see the supplemental material for details. Intuitively,
our formulation allows to "stitch" together different transmittance
behaviors in a way that ensures continuity of the transmittance
with respect to both extinction and transmittance mode parameters.
Note that our formulation is still bounded between 0 and 1, since
the derivative of the non-increasing function 𝑓 is negative, and has
to be zero once T(x, x𝑡 ) reaches zero.
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While our model satisfies requirements (1) – (4) and is straight-
forward to implement, its simple form has the downside that it does
not explicitly track correlation across voxels. Just modifying the
transmittance behavior per voxel is still an approximation of the
ground truth transmittance function. The only "state" that we carry
along a ray is the transmittance up to the current location. As a
consequence of this approximation, our model ends up being non-
reciprocal. A reciprocal model most likely would need to track some
form of correlation between encountered voxels to more faithfully
represent the true transmittance function. Combining reciprocity
and heterogeneous transmittance behavior remains an important
avenue for future work. Since we use our model in conjunction
with unidirectional path tracing, we did not find non-reciprocity
to be a noticeable issue for any of our experiments. We provide an
evaluation of the impact of non-reciprocity in Figure 9 in Section 7.

4.2 Evaluation and Sampling
In order to render with this generalized model, a renderer needs
a way to efficiently evaluate and sample the transmittance func-
tion [Novák et al. 2018]. We use ray marching to estimate trans-
mittance and sample free-flight distances, but exploring unbiased
estimators is an interesting avenue for future work.
When using ray marching, we approximate the transmittance

integral using a quadrature based on a set of evenly spaced locations
along the ray. We found that naively approximating the integral
from Equation 7 using quadrature does not work well. Our model
was derived from the original transmittance formulation using the
fundamental theorem of calculus. If we want this relation to hold
when doing quadrature, we cannot simply evaluate the integrand
as is. We need to use a discrete approximation of the derivative
terms which are part of the integrand. Otherwise, the error of the
quadrature can be almost arbitrarily bad.

We therefore replace the analytic derivative by a finite difference
approximation, where we use a step size proportional to the medium
extinction and the ray marching step size. We provide an expanded
explanation and derivation in the supplemental material. The ray
marching algorithm then simplifies to evaluating the following
recursive expression:

T(x, y) ≈ 𝑓

(
𝑓 −1 (T𝑁−1, 𝛾 (𝑡𝑖 )) + 𝜎t (𝑡𝑖 )Δstep, 𝛾 (𝑡𝑖 )

)
(8)

where, 𝑁 is the number of steps in the ray marching routine, Δstep
the step size and T𝑖 refers to the transmittance from iteration 𝑖

in the evaluation (with T0 = 1). We provide pseudocode for the
transmittance evaluation in Listing 1. This formulation has a simple
intuitive meaning: It can be seen as iteratively decreasing the trans-
mittance according to the local transmittance model and density.
We found this particular evaluation scheme to work well in practical
applications of our model.

Free-flight distance sampling. To use this model in a volumetric
path tracer, we need to be able to sample free-flight distances accord-
ing to it. This is can be done by numerically inverting the cumulative
distribution function (CDF).We sample a uniform random number
𝑢 ∼ U (0, 1) and find 𝑡 such that T(x, x𝑡 ) = 𝑢 by marching along the
ray. We perform bisection search on the last segment to precisely
determine the sampled distance.

1 def transmittance(𝜎t, 𝛾):

2 T = 1

3 for i in range(N):

4 t = i · Δstep # Evaluate distance along ray

5 T = 𝑓
[
𝑓 −1 (T, 𝛾 (𝑡 )) + 𝜎t (𝑡 ) · Δstep, 𝛾 (𝑡 )

]
6 return T

Listing 1. Pseudocode to evaluate the transmittance using our model

This works because the transmittance is defined to be one mi-
nus the CDF of the free-flight distance distribution. The PDF of the
resulting sample is then the negative derivative of the final transmit-
tance value. Since the transmittance is a definite integral evaluated
from 0 to 𝑡 , the derivative of the transmittance with respect to 𝑡 is
simply the integrand itself:

Tpdf (𝑡) = − 𝜕𝑓

𝜕𝜏

(
𝑓 −1 (T(x, x𝑡 ), 𝛾 (𝑡)) , 𝛾 (𝑡)

)
𝜎t (𝑡). (9)

For simple forward rendering of a scene with a monochromatic
extinction coefficient, this PDF does not have to be evaluated ex-
plicitly, since the same term occurs in the non-exponential volume
rendering integral and therefore cancels out.

5 VOLUMETRIC APPEARANCE MODEL
Our transmittance model is motivated by the problem of approxi-
mating complex scenes as scattering volumes. In this section, we
describe the full set of parameters required by our fully volumetric
scene representation. Our representation is parametrized by albedo
𝛼 , phase function parameters and transmittance parameters. For
our main experiments, all parameters are stored on a voxel grid
and interpolated trilinearly between voxels. The spatial behavior
of these parameters could also be modeled by a neural network to
further reduce memory usage.

Transmittance. The transmittance is modeled by our heteroge-
neous transmittance model introduced in Section 4. We store both
extinction 𝜎t and transmittance mode 𝛾 on voxel grids. Both of these
parameters are monochrome, but the method could be extended to
handle spectrally varying transmittance parameters.

Phase function. The phase function describes the angular distribu-
tion of scattering in a volume and plays a crucial role in representing
complex appearance. Since we are interested in representing sur-
faces, it is preferable to use an anisotropic phase function [Jakob
et al. 2010]. We use the SGGX microflake phase function [Heitz et al.
2015], as it is straightforward to use and has robust sampling and
evaluation routines. Being a microflake phase function, the SGGX
is defined by its normal distribution function (NDF). The NDF in
this case is the distribution of normals on a spherical ellipsoid. This
ellipsoid, and hence the SGGX phase function, is parametrized by a
symmetric positive definite 3 × 3 matrix.
Unless specified otherwise, we use an SGGX microflake phase

function with diffuse microflakes for all our results. One advantage
of the SGGX phase function is that it also allows to partially model
the directional dependence of transmittance. In microflake theory,
the extinction of the medium is modulated by the projected area of
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Isotropic SGGX w/o o�set

Ours Reference

Fig. 3. This figure illustrates the difference between using an isotropic phase
function, a standard SGGX phase function and an SGGX phase function
with an offset after scattering (Ours). Applying an offset reduces energy loss
and allows to more faithfully approximate the reference appearance.

the microflakes:

𝜎t (x,𝝎𝑖 ) = 𝜎t (x) ·
∫
Ω
⟨𝝎𝑖 ,𝝎𝑚⟩𝐷 (𝝎𝑚) d𝝎𝑚, (10)

where 𝐷 is the distribution of microflake normals and ⟨·, ·⟩ is the
dot product clamped to positive values. The SGGX phase function
admits a closed-form solution to this integral. For a diffuse plane,
the SGGX microflake distribution can almost perfectly model its
discrete NDF. The projected microflake area will then tend to zero as
we approach grazing angles, just as we would expect for the opacity
of plane. We found this to be useful, since we otherwise do not
model any directional dependence of the transmittance. Developing
a closer coupling between microflake theory and non-exponential
media remains an interesting avenue for future work. Further, the
modeling power of the phase functions is one of the main factors
limiting the generality of our methods.

Separation of local and global scattering. As described, the pre-
sented model does not in any way restrict multiple scattering inside
a voxel. This means that even when using linear transmittance and
a sufficiently high extinction, we can still end up with light paths
eventually going through an opaque surface due to multiple scat-
tering. This does not only result in light leaking, but also produces
significant energy loss on the visible side of a surface.

One possible approach to this problem could be to use one-sided
microflakes, which are transparent from the backside [Dupuy et al.
2016]. However, generalizing this concept to arbitrary scenes is
difficult. We chose a simpler solution: after each medium scatter
event, we offset the start of the next ray by the size of a voxel. This
is similar to using an epsilon for shadow rays to prevent self inter-
sections. The following illustration shows the issue. Conventional
path tracing would simulate multiple scattering inside a voxel and
the path could eventually reach the other side. By offsetting the ray
origin, this is mostly prevented:

Table 1. The resulting file size and percentage of empty voxels of the sparse
volumetric representation for several example scenes. The variation in com-
pressed size is due to different levels of sparsity in the original scenes.

Resolution 16 32 64 128 Original

City building 49.7 KB 0.2 MB 1.1 MB 4.9 MB 1.1 GB
42.2% 65.9% 80.5% 88.8%

City 32.6 KB 0.1 MB 0.7 MB 3.4 MB 1.5 GB
62.1% 80.3% 87.9% 92.4%

Trees 35.4 KB 0.2 MB 1.0 MB 5.0 MB 452 MB
58.8% 73.9% 82.6% 88.7%

Checkerboards 53.7 KB 0.2 MB 0.9 MB 3.3 MB 36 KB
37.6% 66.1% 83.9% 92.5%

Fractal 51.7 KB 0.3 MB 1.5 MB 8.0 MB 42 MB
39.9% 61.1% 73.4% 81.9%

Conventional Ours

In Figure 3, we show the impact of this offset on an example scene.
Offsetting the ray origin is related to shell tracing [Moon et al.
2007; Müller et al. 2016], where local transport is summarized over a
spherical region and the light path proceeds from a location sampled
on a sphere around the current location in the medium.

6 APPLICATION: APPEARANCE PREFILTERING
One application of our model is appearance prefiltering for level of
detail, or scene compression. Given a complex scene, we try to ap-
proximate it using a lower resolution volumetric representation. In
our volumetric appearance model, we have to determine the param-
eters that reproduce a certain target appearance. During rendering,
we use a voxel grid resolution that is appropriate for the size of the
image pixels. Therefore, we build a hierarchy of voxel grids covering
different resolutions, doubling the resolution between each scale.
We fit the medium parameters separately for each target resolution,
as simply downsampling from the finest resolution would not pre-
serve appearance. The fitting time is dominated by the runtime at
the highest resolution, so fitting parameters independently at lower
resolutions does not significantly impact processing time.
The fitting pipeline consists of multiple stages illustrated in Fig-

ure 4. First, we compute a binary voxelization of the scene, marking
each non-empty voxel for further processing. We use Binvox [Min
2021; Nooruddin and Turk 2003] to determine the set of non-empty
voxels. This first step is important for computational efficiency, since
the total number of voxels in a grid of width 𝑛 is 𝑛3, but the number
of occupied surface voxels only increases at a rate of 𝑂 (𝑛2). Our
goal is to create a surface voxelization, i.e., we do not fill in solid
objects. This ensures that our representation remains sparse, and
therefore efficient to render and store. We show compression rates
for a few example scenes in Table 1.
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Fig. 4. Overview of our scene prefiltering pipeline. We first obtain an initial binary voxelization of the scene and then trace rays in each occupied voxel to
determine local appearance parameters. We further refine the transmittance model by optimizing the 𝜎t and 𝛾 parameters using gradient descent. During
the optimization, we sample random line segments in the scene and compute an 𝐿1 loss between our transmittance model and the reference transmittance
(estimated using ray tracing). This whole pipeline is run once for each target resolution.

We then trace light paths in each non-empty voxel using a path
tracer and estimate the voxel’s albedo by averaging their through-
put. Therefore, the albedo of a voxel already accounts for multiple
scattering within this voxel.

Phase function. For the SGGX phase function, we fit parameters
using the algorithm provided by Heitz et al. [2015]. The ellipsoid
defining the SGGX phase function can be expressed by 3 eigenvec-
tors and corresponding projected areas. To fit these parameters,
we first obtain a distribution of surface normals inside the voxel
by intersecting rays with the geometry. Given a large number of
sampled normals, we then compute the covariance matrix of the
components of these normals. By performing an eigendecomposi-
tion on this covariance matrix we obtain the eigenvectors of the
ellipsoid. The projected areas are then computed by projecting the
sampled normals onto these three eigenvectors.

6.1 Transmittance Optimization
There is no closed-form solution for the extinction 𝜎t and trans-
mittance mode 𝛾 . Even when using the original exponential trans-
mittance in combination with a microflake phase function, the ex-
tinction coefficient of a single voxel does not have a closed-form
solution. This is due to the modulation of the extinction by the
view-dependent projected area of the microflake distribution. In
previous work [Loubet and Neyret 2017], they fit the extinction
value locally by performing gradient descent. This can be done by
tracing a number of rays for each voxel and then optimizing the
extinction value to reproduce the observed directionally varying
opacity behavior.
At first, this seems like the right way to solve this problem: to

determine the per-voxel extinction, we should just consider what
happens inside the region of the scene represented by that single
voxel. However, there are two main issues with this approach. First,
it completely ignores any correlation effects across voxels. The
second issue is less obvious, but equally important: Due to the
nature of the volumetric approximation, it is typically impossible to
perfectly fit the reference scene. By fitting parameters independently
per voxel, we effectively prioritize per voxel error over error at larger
scales or even image space error. Empirically we found this to lead
to significantly less accurate results than optimizing across multiple
voxels. The benefit of this is illustrated in Figure 5. Both exponential

Exponential (1 voxel) Non-exponential (1 voxel)

Exponential (20 voxels) Non-Exponential (20 voxels) Reference

Multiple voxels

Surface

Single voxel

Fig. 5. Fitting over several voxels can drastically reduce error. In the top
row, we fit medium parameters to represent the transmittance behavior of
a single voxel. In the bottom row, the extinction is fit over beams of the
length of 20 voxels. In these examples, the composited background has a
constant RGB color of (4, 3, 0.9), which helps to highlight leakage. In the
insets, we highlight pixels with more than 99.99% opacity. Note how the
exponential representation does not even come close to being fully opaque.
The illustration in the top right shows how fitting over multiple voxels better
represents the absorption behavior for rays at grazing angles.

and non-exponential transmittance models strongly benefit from
optimizing transmittance over several voxels.

To optimize our transmittance parameters, we first initialize the
extinction coefficient of each non-empty voxel by tracing 𝑁 rays
through its region in the reference scene. We then compute

𝜎 initt = −1
𝑠
log

(
1
𝑁

𝑁∑
𝑖=1

𝑉𝑖

)
, (11)

where 𝑠 is the side length of a single voxel and 𝑉𝑖 the visibility
of sample 𝑖 (i.e., 1 if the ray passed through the voxel and zero
otherwise). The transmittance mode 𝛾 is initialized to 1, which
corresponds to exponential transmittance. This initialization gives
the optimizer a starting guess to work from. We then optimize the

ACM Trans. Graph., Vol. 40, No. 4, Article 136. Publication date: August 2021.



A Non-Exponential Transmittance Model for Volumetric Scene Representations • 136:9

parameters by minimizing the following loss function:

𝐿(𝜎t, 𝛾) =
∫
V

∫
V

|T(x, y) − Tref (x, y) |𝑝 (x, y) dx dy, (12)

where x and y are 3D points following a distribution 𝑝 (x, y). In
practice, we sample x and y by generating randomly oriented seg-
ments passing through occupied voxels. Practically, we found that
segments of 20 voxels in length are sufficient for capturing even
sophisticated correlations along grazing angles. The reference trans-
mittance Tref (x, y) is computed by tracing rays between the two
points. In a scene consisting of hard surfaces, the reference trans-
mittance is the binary visibility function. Since our volumetric ap-
proximation is bandlimited due to the voxel grid resolution, we
also filter the reference transmittance with a small Gaussian kernel
of a standard deviation of 𝑠/6, where 𝑠 is the voxel size in world
units. This means, that instead of just tracing rays between x and
y, we randomly offset the ray origin in a plane perpendicular to
the vector between the two points (as illustrated in Figure 4). This
aids optimization, as it reduces variance in the evaluation of the
reference transmittance. We optimize this loss over batches of 16k
voxels simultaneously using the Adam optimizer [Kingma and Ba
2015] and a learning rate of 0.5. We run this optimization for 512
epochs over all occupied voxels.

6.2 Efficient Transmittance Gradient Computation
To optimize our transmittance model, we need to compute the gradi-
ent of the objective function with respect to the parameters. Simply
using automatic differentiation to optimize transmittance parame-
ters results in very high memory consumption, as the state of each
loop iteration has to be stored. This was also observed by previous
work on optimizing transmittance [Zheng et al. 2020]. Efficiently
optimizing through a for-loop can be difficult using a conventional
automatic differentiation framework.

We therefore implemented both the transmittance evaluation and
its gradient manually using CUDA. The key idea to make this effi-
cient is to evaluate the derivatives in reverse mode. While normally
the term reverse mode is used in the context of automatic differenti-
ation, the exact same principle applies when computing derivatives
by hand. Using reverse-mode differentiation is crucial to optimizing
many parameters at once, without having to run the forward compu-
tation once per parameter. We further use the fact that we can easily
invert an iteration of the transmittance computation loop. This
allows to implement the transmittance optimization without any
temporary storage. We therefore only store the wavefront of rays
to evaluate and the volume parameters. The idea of using reversible
computations to reduce memory usage when computing derivatives
has for example also been applied to neural networks [Gomez et al.
2017].

In our implementation, we first evaluate the transmittance using
ray marching in the forward direction. Then we compute the loss
and the gradient of the loss. This gradient is then propagated in a
reversed ray marching loop, where we accumulate gradients of the
extinction and transmittance mode parameters. In each iteration
of the reverse loop, we compute the previous loop state using the
inverse transmittance function. We validated our analytic gradi-
ents against finite differences and automatic differentiation using

Enoki [Jakob 2019]. The pseudocode for our reverse transmittance
evaluation is given in Listing 2. The adjoint function takes the loss
gradient 𝛿T and result of the forward pass, T, as inputs. Additionally,
we pass the transmittance parameters and corresponding gradient
variables, in which the gradients are accumulated.

1 def transmittance_adjoint(𝛿T, T, 𝜎t, 𝛾, 𝛿𝜎t, 𝛿𝛾):

2 for i in reversed(range(N)):

3 t = i · Δstep
4 𝜎t = 𝜎t(t) # Get current medium parameters

5 𝛾 = 𝛾(t)

6 T = 𝑓
[
𝑓 −1 (T, 𝛾 ) − 𝜎t · Δstep, 𝛾

]
# Inverse loop iteration

7 𝜏 = 𝑓 −1 (T, 𝛾 ) + 𝜎t · Δstep # Optical depth

8 # Accumulate 𝜎t and 𝛾 gradients

9 𝛿𝜎t (𝑡 ) += 𝛿T · Δstep · 𝑓𝜏 (𝜏,𝛾 )
10 𝛿𝛾 (𝑡 ) += 𝛿T ·

[
𝑓𝜏 (𝜏,𝛾 ) · 𝑓 −1𝛾 (T, 𝛾 ) + 𝑓𝛾 (𝜏,𝛾 )

]
11 𝛿T *= 𝑓𝜏 (𝜏,𝛾 ) · 𝑓 −1T (T, 𝛾 ) # Update Jacobian

12 return T

Listing 2. Pseudocode for the memoryless adjoint transmittance evaluation.
Subscripts to functions denote partial derivatives, e.g., 𝑓𝜏 = 𝜕𝑓/𝜕𝜏 .

7 APPLICATION: IMAGE-BASED RECONSTRUCTION
As another application, our non-exponential transmittance model
can be applied to the problem of image-based volumetric scene
reconstruction. Using a volumetric representation is advantageous
for differentiable rendering, as it does not have to handle edge
discontinuities [Li et al. 2018]. A model based on volume rendering
is always continuous, as long as the underlying volumetric grids
use trilinear interpolation (or a continuous neural network).
Given a set of reference images, we can optimize extinction val-

ues, transmittance mode, phase function parameters and albedo on
a voxel grid to match the reference appearance. In our experiments,
we use voxel grid resolutions of up to 2563. For all parameters we
start with a uniform grid as our initial guess. We optimize parame-
ters using differentiable rendering and up to 4 bounces of indirect
illumination. A higher number of indirect bounces could be used,
but this increases computation time and did not significantly change
our results. We use a coarse-to-fine optimization routine to improve
the convexity of the problem, similar to the volumetric optimiza-
tions in Nimier-David et al. [2019]. We start at a volume and image
resolution of 43 and 42, respectively, and then increase both resolu-
tions after a number of iterations up to reaching the final volume
resolution. The low starting resolution not only makes the prob-
lem more convex, but also makes the initial optimization iterations
cheaper to render.
We implemented a differentiable volume renderer using CUDA

and analytic derivatives. Computing gradients of a rendered im-
age is a straightforward extension of the code used to optimize
transmittance between two points (see Listing 2). Using a unified
volumetric representation means that our renderer does not need to
support surfaces. We use volumetric path tracing with next event
estimation, and then use an approach similar to recent adjoint meth-
ods [Nimier-David et al. 2020; Stam 2020] to compute parameter
gradients.
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Fig. 6. These results show differences between using exponential vs. our more generic non-exponential transmittance. We also compare to the result obtained
by optimizing the exponential model using a relative loss, which favors higher extinction values. Regardless of the loss function, the exponential model
often leads to light leaking, resulting in overly bright shadows. Using a relative loss, we get worse results on semitransparent structures, such as the bloated
appearance of the fence in the bottom right scene.

We perform the optimization under a uniform illumination and
then re-render the result using a novel illumination condition. The
illumination condition we use for the optimization is advantageous
as no hard shadows are cast into the scene. Since this paper is about
the new transmittance model, we leave the issue of optimizing
under more difficult illumination conditions to future work. Our
optimization uses a silhouette loss to further reduce ambiguities
between fore- and background.

8 RESULTS
We implemented our method on top of Mitsuba 2 [Nimier-David
et al. 2019] and Enoki [Jakob 2019]. A large part of the pipeline has
been written utilizing the Python frontend to Mitsuba. Expensive
computations are carried out on an Nvidia RTX Titan GPU using
CUDA and we trace rays using OptiX [Parker et al. 2010]. For our
appearance prefiltering results, we implemented a dynamic mip
mapping scheme based on ray differentials [Igehy 1999]. Using the
ray differentials, we estimate the size of a pixel in world space as we
intersect the volume bounding box. We then probabilistically choose
one of the two volume resolutions which most closely match the
scale of the pixels. For simplicity, we use the same volume resolution
for the whole light path. Our supplemental video contains several
zoom ins where we choose the mip level in this way. The following
results in the paper all have been computed at a fixed scale to
facilitate comparisons to previous work.

Performance. We evaluate the performance of our methods using
both exponential and non-exponential transmittance models. When
prefiltering the "City building" scene (see Figure 2) at a resolution of
1283 voxels, it takes around 1 minute to compute albedo, SGGX pa-
rameters and initial extinction values. Optimizing the transmittance

then takes 4 minutes using an exponential model and around 4.5
minutes using our non-exponential transmittance, which amounts
to around 12.5% overhead. Rendering the optimized volume on the
CPU is around 35% slower when using our non-exponential model
than when using the exponential model. For reference, path trac-
ing the same scene using Embree [Wald et al. 2014] is around 5×
faster than rendering the volumetric representation. This is not sur-
prising, as our volume rendering implementation was only lightly
optimized.

Image-based reconstruction of a volumetric scene representation
is significantly more challenging than appearance prefiltering and
takes around 1 hour for the results shown in Figure 14 (2563 voxels).
The non-exponential model takes around 10% more time to optimize.
However, the CUDA implementation could be simplified to support
purely exponential media more efficiently.

Exponential vs. non-exponential transmittance. For appearance
prefiltering, we show the practical benefits from switching to a
non-exponential transmittance in Figure 6. We ran our transmit-
tance optimization both for the exponential and our general non-
exponential model. For both sets of results, we separate local and
global scattering by offsetting the starting location of rays. This is
a form of non-exponentiality, but a standard exponential medium
would result in significant energy loss, as shown in Figure 3.

We found that the exponential model suffers from significant
leaking artifacts. One possible approach to reduce leaking is to more
strongly penalize this type of error. Therefore, we experimented
with using a relative loss, where the 𝐿1 transmittance loss is divided
by the ground truth transmittance (clamped to a small epsilon to pre-
vent division by zero). This increases the loss value if the reference
transmittance is zero or close to zero. We found that this helped to
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Fig. 7. We plot the reference simulated transmittance (solid line) against both our non-exponential and exponential transmittance fits. In all these results we
use a voxel grid of 163 resolution and compare to the ground-truth transmittance computed using ray tracing in a beam of the same footprint. The exponential
transmittance often decreases too rapidly for surfaces, which leads to bloating. However, in other scenarios, despite this rapid decrease in transmittance, the
exponential model leads to significant leaking, as highlighted in the inset plots, due to its inability to easily reach zero. The non-exponential model fits the
transmittance curves more faithfully and prevents leakage.

reduce leaking, but at the same time drastically increased bloating,
especially for semitransparent regions such as the fence in Figure 6.
This indicates that the exponential model cannot easily be fixed by
just changing the optimization routine. This is a trade-off between
opaqueness and amount of bloating inherent to the exponential
transmittance model. Our more general non-exponential model can
find a better compromise between these conflicting goals. We found
it to mostly eliminate leaking as well as reducing bloating compared
to the exponential model.
In Figure 7 we plot the transmittance obtained after optimizing

medium parameters, and the corresponding values of 𝛾 . These plots
demonstrate that the optimizer is able to automatically detect re-
gions with different modes (opaque vs. aggregate uncorrelated) and
pick the proper transmittance mode for it by selecting the 𝛾 param-
eter value. It further showcases the issues related to bloating and
leaking found in the exponential model. We can also see that both
the non-exponential and exponential model are approximations and
do not give a perfect match to the reference transmittance.

Figure 8 visualizes the 𝛾 values after optimization. The optimizer
prefers using linear transmittance for solid objects, while it resorts to
the classic exponential transmittance for aggregate or unstructured
detail, such as leaves towards the outside of the trees. We addition-
ally discuss the optimization convergence for a few example scenes
in the supplemental material.

Reciprocity. Our transmittancemodel is not reciprocal. Thismeans
that evaluating the transmittance T(x, y) might not match evaluat-
ing T(y, x). We evaluate the practical impact of this limitation by
switching the evaluation direction of the transmittancewhen tracing
shadow rays. We render several volumetric scene representations
both using the unmodified path tracer and the implementation with
the reversed shadow rays. The results of this experiment are shown
in Figure 9. The differences caused by non-reciprocal behavior are
almost imperceptible. This indicates that the non-reciprocity is not
a limiting factor in practice. We provide some additional evaluation
in the supplemental material.

0.0 0.5 1.0

γ

Fig. 8. We visualize the fitted values for 𝛾 over several horizontal slices in
the same scene. The voxel grid used here has a resolution of 643. These slices
show that the optimizer indeed automatically classifies voxels containing
opaque geometry to use linear transmittance (blue) and voxels contain-
ing more unstructured geometry (e.g. leaves) towards using exponential
transmittance (red).

Specular surfaces. The problem of finding the right transmittance
model is mostly orthogonal to the problem of defining the phase
function. We therefore use simple diffuse BSDFs in most of our
scenes. However, our prefiltering method can also be applied to
scenes with specular surfaces, as we show in Figure 10. Our vol-
umetric model reproduces the overall appearance of the golden
bunny, but leads to a slight loss in sharpness of the reflection. It
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Original Reversed shadow rays L1 error

0.000 0.008

Fig. 9. We evaluate the practical impact of our model’s non-reciprocity by
rendering our volume as usual, but evaluating shadow rays in the reverse
direction (second column). The difference to the original rendering using the
unmodified path tracer is almost imperceptible. All error maps are scaled
consistently and normalized to make the small differences visible.
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Fig. 10. By switching the SGGX phase function to use specular microflakes,
we can also compute level of detail for metallic objects.

remains an important avenue of future work to define a general
phase function models to handle the full spectrum of diffuse, plastic
and metal objects.

Comparison to prior work. We compare our prefiltering method to
the state-of-the-art Hybrid LoD method [Loubet and Neyret 2017].
Figure 11 shows the comparison on several example scenes. We
used the original implementation provided by the authors, which

we extended to be able to load Mitsuba 2 scenes. We run both meth-
ods at resolutions 162 and 642 and compare to the ground truth
of rendering the reference scene at the same resolution. The Hy-
brid LoD method produces good results on volume-friendly scenes
(i.e., aggregate details), e.g., the "Trees" scene. However, it often
misclassifies complex and mixed types of geometry as a volume
(e.g., for the "City building" and "City" scenes), which leads to a
semitransparent appearance that is far from the ground truth. The
"Checkerboards" scene also shows how this behavior is scale depen-
dent. At the higher resolution, it correctly classifies all surfaces as
surfaces. However, as the resolution is decreased it switches to a vol-
umetric representation, which changes the appearance of the object
drastically. Our method does not perform a binary classification and
therefore can maintain a consistent approximation quality across
scales. The optimizer automatically lands at the best transmittance
mode, also including the spectrum between linear (opaque) and
exponential (aggregate) transmittance modes. We show a higher
resolution rendering of a LoD volume computed using our method
compared to Hybrid LoD to show the issues of this binary classifica-
tion in Figure 12. The binary classification results in drastic changes
of appearance across a single LoD.

Application to neural radiance fields. We also ran some experi-
ments where we modified the NeRF code base [Mildenhall et al.
2020] to use a non-exponential transmittance. The results of this
are shown in Figure 13. Using a non-exponential transmittance, we
can achieve some improvements in the sharpness of the generated
images. On the "red plane" scene, the unmodified NeRF model strug-
gles to represent the vertical plane. Our non-exponential model
manages to produce more accurate results. The combination of
non-exponential transmittance with neural networks to solve real
computer vision problems, however, remains an interesting future
direction.

Application to image-based reconstruction. As described in Sec-
tion 7, we can also apply our non-exponential transmittance model
to improve image-based reconstruction using differentiable path
tracing. In Figure 14, we show reconstructions of several example
scenes using an exponential and our non-exponential representa-
tion. All results use a voxel grid resolution of 2563, which means that
we optimize ca. 184 million parameters. However, since a lot of the
voxels are empty, the optimization problem remains tractable. We
optimize for 64 views of the synthetic scene at once. The optimiza-
tion uses around 21 GB of VRAM, but the code could be optimized
further.
Both the exponential and our non-exponential model converge

to a meaningful volumetric approximation of the reference scene.
However, the exponential model again suffers from leaking, despite
the explicit silhouette loss. This is primarily visible in thin struc-
tures. At the same time, this exponential model also suffers from
more bloating than our non-exponential model, as shown well in the
details of the "Lego" scene. The exponential model fills in parts of
the beams where holes should be present, while leading to leaking
in other parts. This shows that using an exponential transmittance
model is not sufficient when trying to relight a volumetric scene
reconstruction, which is consistent with our observations made for
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Fig. 11. Prefiltering results on a variety of scenes with different complexity. Reference is the path traced ground truth geometry. The reference is rendered
using a Gaussian pixel filter to bandlimit the signal. Naive is a naive volumetric approximation of the scene. This is the starting point for our optimization. All
LoD methods use a voxel resolution which matches the resolution of the rendered images. Loubet and Neyret 2017 is the previous state of the art in automatic
volumetric level of detail and Ours is our non-exponential model. All results are rendered using 1024 samples per pixel and we visualize mean squared errors
(MSE) compared to the reference image. All MSE values have been multiplied by a factor of 100 for readability.
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Hybrid LOD Ours

Fig. 12. If we render low resolution LoD volumes at a higher pixel resolution,
we can see that the Hybrid LoD method by Loubet and Neyret [2017]
struggles to correctly separate surfaces and volumes. Our method results
in a smoother model, as it does not apply a binary classification between
surface-like and volume-like scattering.

Fig. 13. Neural volumetric representation of the "Lego" scene (top) using
NeRF [Mildenhall et al. 2020] with the original exponential transmittance
model and with a purely linear model. We also applied exponential NeRF and
a version using our transmittance model to the "Red plane" scene (bottom).

the level of detail use case. Overall, we observe that the improve-
ment on image-based reconstruction is smaller than for appearance
prefiltering. Image-based optimization using global illumination is

a harder problem than fitting transmittance parameters against a
known 3D scene. Additionally, the image-based optimization does
not enforce sparsity of the volume density field. The lack of sparsity
constraints makes the results less sensitive to the transmittance
model than for appearance prefiltering, where we explicitly enforce
sparsity.

9 CONCLUSION AND FUTURE WORK
In this paper, we introduced a new volumetric transmittance model,
which allows to represent both surface-like and volumetric appear-
ance in a single coherent framework. Our model does not require
explicit binary classification and we show that its parameters can be
optimized efficiently using gradient-based optimization. We further
show improvements to image-based reconstruction using differen-
tiable rendering. Our model can easily be integrated into existing
systems and is simple to implement.

While we found our transmittance formulation to work well for
the shown applications, it is not constrained to be reciprocal. Devel-
oping a reciprocal formulation would be interesting and would make
the model applicable in the context of bidirectional algorithms. It
would also be interesting to investigate if the transmittance could be
sampled and evaluated in an unbiased way, instead of using biased
ray marching. One of the main practical limitations is the represen-
tation power of the phase function. The SGGX phase function [Heitz
et al. 2015] is able to represent diffuse andmetallic surfaces, but more
work is required to define more general phase functions to handle
plastic-like or dielectric materials. The phase function further serves
an important role in preventing leaking due to multiple scattering.
With the SGGX phase functions, more sampled directions will point
into the surface as roughness of the normal distribution is increased.
This can result in leaking of multiple scattering on the back of a
surface and energy loss on the front side.
Overall, we hope that our work enables future research to go

beyond just exponential transmittance models. We believe that this
is a necessary step towards further unification of surface and vol-
ume rendering. With the recent gain in popularity of differentiable
rendering, unifying these two worlds can benefit practical scene
reconstruction approaches.
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Fig. 14. Results of reconstructing scenes using an image-based optimization. We compare our non-exponential transmittance model with the exponential
model and the ground truth reference. All volumes use a resolution of 2563 and we use the same resolution to render the resulting images.
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