
A Learned Shape-Adaptive Subsurface Scattering Model

DELIO VICINI, Ecole Polytechnique Fédérale de Lausanne (EPFL)
VLADLEN KOLTUN, Intel Labs
WENZEL JAKOB, Ecole Polytechnique Fédérale de Lausanne (EPFL)

9.5 minutes
311 samples
RMSE = 0.005

9.3 minutes
916 samples
RMSE = 0.013

Fig. 1. Rendering of translucent soap blocks with significant anisotropy (д = 0.9). (a) Dipole diffusion-based models such as Photon Beam Diffusion [Habel
et al. 2013] yield overall flat appearance due to their internal assumption of isotropy and plane-parallel light transport. (b) Our learned subsurface scattering
model adapts to both geometry and anisotropy, producing more realistic appearance and lower error compared to a path-traced reference. Accounting for the
geometry leads to increased scattering around the silhouette and overall higher contrast in regions with geometric detail. Our method has constant sampling
weights, hence renderings converge with fewer samples. Please see the supplemental material for an interactive version of this figure including error maps.

Subsurface scattering, in which light refracts into a translucent material to
interact with its interior, is the dominant mode of light transport in many
types of organic materials. Accounting for this phenomenon is thus crucial
for visual realism, but explicit simulation of the complex internal scattering
process is often too costly. BSSRDF models based on analytic transport
solutions are significantly more efficient but impose severe assumptions that
are almost always violated, e.g. planar geometry, isotropy, low absorption,
and spatio-directional separability. The resulting discrepancies between
model and usage lead to objectionable errors in renderings, particularly near
geometric features that violate planarity.

This article introduces a new shape-adaptive BSSRDF model that retains
the efficiency of prior analytic methods while greatly improving overall accu-
racy. Our approach is based on a conditional variational autoencoder, which
learns to sample from a reference distribution produced by a brute-force vol-
umetric path tracer. In contrast to the path tracer, our autoencoder directly
samples outgoing locations on the object surface, bypassing a potentially
lengthy internal scattering process.

The distribution is conditional on both material properties and a set of
features characterizing geometric variation in a neighborhood of the incident
location. We use a low-order polynomial to model the local geometry as an
implicitly defined surface, capturing curvature, thickness, corners, as well
as cylindrical and toroidal regions. We present several examples of objects
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with challenging medium parameters and complex geometry and compare
to ground truth simulations and prior work.
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1 INTRODUCTION
A variety of materials ranging from organic substances like skin or
fruits to liquids and translucent stone exhibit significant subsurface
light transport, where light that enters the surface at one point exits
some distance away. This process is generally modeled using the
radiative transfer equation (RTE) and involves long sequences of
scattering interactionswithin amedium that fills the object’s interior.
Although Monte Carlo methods can be used to solve the resulting
integration problem, this tends to be impracticably expensive for
many real-world materials due to their high albedo, anisotropy,
and density.
For instance, Narasimhan et al. [2006] measured the scattering

parameters of a large number of materials and report that milk
has an albedo of α ≈ 0.99959, meaning that light will scatter an
expected number of 2439 times before being absorbed. Furthermore,
scattering is strongly forward-peaked (д ≈ 0.9), and light will thus
tend to penetrate deeply into the object.

An alternative approach for rendering subsurface scattering with-
out the need for costly internal scattering simulations involves
the notion of a bidirectional scattering-surface reflectance distribu-
tion function (BSSRDF). BSSRDF models directly encode surface-
to-surface transport and are typically based on analytic solutions
of simplified light transport problems, such as solutions of the
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diffusion equation in a plane-parallel setting. While significantly
more efficient, these models impose severe assumptions that are
almost always violated—standard steps in the derivation of diffu-
sion models for example postulate half-space or slab geometry and
low anisotropy/absorption. Another assumption is that of separa-
bility, i.e. that the BSSRDF decomposes into a product of functions
with spatial or directional dependence. The resulting discrepancies
between model and actual usage lead to objectionable errors in
rendered images, particularly near geometric features that violate
planarity. In recent years, BSSRDF models have fallen out of favor
due to these problems, with major rendering systems adopting or
falling back to Monte Carlo sampling of the radiative transfer equa-
tion despite the associated computational expense [Christensen et al.
2018; Fascione et al. 2018].

In this article, we introduce a new shape-adaptive BSSRDF model
with support for arbitrary homogeneous medium parameters. Our
method retains the efficiency of classical BSSRDF models without
imposing the typical assumptions of diffusion models, greatly im-
proving overall accuracy. Our technique relies on a combination
of three neural networks that together constitute a probabilistic
generative model for BSSRDF sampling on general curved surfaces.
The first is a conditional variational autoencoder [Kingma and

Welling 2013], which learns to sample from a reference distribution
produced by a volumetric path tracer. The second is a multilayer
perceptron that regresses the distribution’s scale factor to allow for
absorbing materials. Both are conditioned on a number of parame-
ters that are pre-processed by a third feature network. These include
material properties (albedo, extinction, anisotropy, and index of re-
fraction), the incident direction, and a descriptor characterizing
geometric variation in a neighborhood of the incident location. The
networks admit a compact implementation that is efficient enough
to support evaluation at every surface intersection. To describe the
local geometry, we rely on a low-order trivariate polynomial that en-
codes an approximate signed-distance function, making the model
adaptive to geometric detail including curvature, thickness, corners,
as well as cylindrical and toroidal extrusions (e.g. handles).
We jointly train all three networks on a reference dataset of

transport paths generated by a brute-force Monte Carlo simulation
involving geometry retrieved from a repository of shapes of vary-
ing complexity, including CAD models and 3D scans. Training is
scene-independent and only requires the set of final path vertices,
where light refracts out of the training shapes. This yields an effi-
cient BSSRDF sampling scheme with uniform weights that bypasses
the lengthy internal scattering process. Our technique makes two
central approximations. The first is that we model the geometry
around a shading point as a smooth implicit surface, which po-
tentially entails some loss of detail. The second is that we replace
the ground-truth transport on this implicit surface by a learned
distribution.

We analyze the performance and accuracy of our model on scenes
with challenging geometry and material properties, and we also in-
vestigate the effect of our approximations individually. Our method
achieves significantly lower error than state-of-the-art BSSRDFmod-
els including those of Habel et al. [2013], Frisvad et al. [2014], and
Frederickx et al. [2017] using a comparable time budget.

2 RELATED WORK
The radiative transfer equation (RTE) arises in a wide variety of
fields including atmospheric science, neutron transport, astronomy,
and medical physics. The scalar form that is commonly used in
computer graphics can be derived by analyzing scattering within
a medium containing randomly distributed and uncorrelated parti-
cles [Chandrasekhar 1960; Ishimaru 1999]. A polarized form derived
from wave optics was presented by Mishchenko [2006].

Monte Carlo methods. The most general techniques for solving
the RTE are based on variants of Monte Carlo path tracing [Hanra-
han and Krueger 1993; Kajiya 1986; Kajiya and Von Herzen 1984]
and involve nested sampling of scattering events to form complete
light paths. Paths can also be generated bidirectionally, e.g. using
density estimators based on photon [Jensen and Christensen 1998]
or ray primitives [Novák et al. 2012]. Path sampling approaches tend
to be very costly when rendering highly-scattering media, where
light potentially undergoes thousands of interactions before leav-
ing the material. Absorption is another source of inefficiency, since
considerable time may be spent generating paths that propagate
deeply into the material without contributing to the rendered image.
Dwivedi sampling [Křivánek and d’Eon 2014; Meng et al. 2016]
improves statistical efficiency in such cases by biasing the random
walk toward the surface.

Due to the high costs of volumetric path tracing, many works
have proposed BSSRDF models that cast subsurface scattering into
a considerably lower-dimensional integral over surface positions
and incident directions. Explicit discretization of the 8-dimensional
parameter space of BSSRDFs usually remains elusive, though sim-
plifying assumptions such as homogeneous planar geometry can
reduce the dimensionality sufficiently to make approximate tabula-
tion of Monte Carlo simulations feasible [Donner et al. 2009].

Diffusion theory. The vast majority of BSSRDF models in com-
puter graphics are based on analytic transport solutions derived
from diffusion theory, which can be interpreted as a directional
first-order expansion of the RTE [Ishimaru 1999]. Starting with the
Green’s function of the diffusion equation in an infinite volume,
these methods approximate planar boundary conditions using the
method of images, resulting in dipole [Jensen et al. 2001] or multi-
pole [Donner and Jensen 2005] configurations that can be evaluated
using efficient tree data structures [Jensen and Buhler 2002], ray
tracing-based projections [Jensen et al. 2001; King et al. 2013; Wal-
ter et al. 2012] or discrete convolutions [d’Eon et al. 2007; Jimenez
et al. 2009]. Since they only account for multiply scattered light,
these models must be combined with a separate single scattering
term [Hanrahan and Krueger 1993].

Classic diffusion tends to produce severe errors when simulating
absorbing media, and later BSSRDF models adopt modified diffu-
sion solutions and improved boundary conditions that rectify these
problems [d’Eon 2012; D’Eon and Irving 2011; Habel et al. 2013].
Other diffusion-based models introduce support for anisotropic
structures [Jakob et al. 2010] or an added dependence on the an-
gle of incidence that leads to an anisotropic profile [Frisvad et al.
2014; Habel et al. 2013]. A general limitation of analytic diffusion
models is the built-in plane-parallel assumption that introduces
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errors when rendering non-planar objects. Finite element solutions
that solve the diffusion equation on a discrete domain composed of
voxels or tetrahedral elements [Arbree et al. 2011; Stam 1995; Wang
et al. 2008] improve accuracy but lack the efficiency of analytic
methods. A dipole model for spherical geometry was presented by
Kolchin [2010].

Feynman path integration. An interesting approach for highly
forward-scattering media was pioneered by Tessendorf [1987]. In
this setting, the trajectory of light can be approximated as a smoothly
curving continuous path. Applied to the radiative transfer equation,
this approximation turns the discrete integral over scattering inter-
actions into a Feynman path integral over all possible continuous
paths. Premože et al. [2003] use this framework to derive an ap-
proximate BSSRDF model based on the concept of themost probable
path. Motivated by a connection to polymer physics, Frederickx et
al. [2017] derive an approximate solution of the path integral in an
infinite medium and use it to create a plane-parallel BSSRDF model
based on a dipole configuration.

Neural networks. Neural networks are a widely used building
block for constructing expressive nonlinear function approxima-
tors, classifiers, and generative models (see LeCun et al. [2015] for a
general overview). Applications in computer graphics include de-
noising of images rendered using Monte Carlo techniques [Bako
et al. 2017; Chaitanya et al. 2017; Vogels et al. 2018], approximate
shading of surfaces [Hermosilla et al. 2018] and heterogeneous vol-
umes [Kallweit et al. 2017], and shading in screen space [Nalbach
et al. 2017].
Two related recent articles by Müller et al. [2018] and Zheng

and Zwicker [2018] propose methods that learn to sample light
paths in a scene using extensions of the Real NVP (“non-volume
preserving”) network architecture [Dinh et al. 2016]. These meth-
ods could in principle be applied to render subsurface scattering,
although the high dimensionality of volumetric path space is likely
prohibitive. The main limitation of this approach is that training
runs concurrently with rendering and adds considerable overhead.

3 BACKGROUND
We will briefly review the standard radiative transfer formulation
that gives rise to subsurface scattering along with similarity theory
and the core concepts of the variational autoencoder.

Radiative transfer. Light transport within the interior of an object
is generally simulated using the radiative transfer equation (RTE),
which models the material as a suspension of scattering and absorb-
ing particles that are too small and numerous to be individually
discernible and can hence be represented using density functions.
The RTE

(ω · ∇)L(x,ω) = − σtL(x,ω)

+ σs

∫
S2

L(x,ω ′) fp (ω
′,ω) dω ′, (x ∈ Ω) (1)

is defined on a domain Ω and relates the directional change of radi-
ance L in directionω to a sum of two effects: extinction proportional
to σt = σa + σs causes light traveling along the ray to be absorbed

(σa ) or scattered (σs ) into other directions. In-scattering propor-
tional to σs redirects light arriving from other directionsω ′ so that
it now travels in direction ω. The phase-function fp describes the
change in direction when light is scattered by the medium. We use
the Henyey-Greenstein [1941] phase function, which is parameter-
ized by its mean cosine д ∈ [−1, 1]. A value of д = 0 indicates an
isotropic medium, where light becomes directionally diffuse after
a single interaction, and д ≈ 1 indicates strongly forward-peaked
scattering that approximately preserves the direction of propaga-
tion. Most translucent materials are highly anisotropic with values
of д > 0.9 [Narasimhan et al. 2006]. We denote the scattering albedo
of a single medium interaction as α = σs /σt .

Note that the RTE is only valid on object’s interior, while surface
positions satisfy the following boundary condition:

Lo (x,ω) =

∫
S2

Li (x,ω ′) fs (ω
′,ω) |ω ′ ·ω | dω ′. (x ∈ ∂Ω) (2)

Here, fs is the surface’s bidirectional scattering distribution function
(BSDF), which models surface interactions including total internal
reflection and angular deviation of rays moving through an index
of refraction change. In this work, we only consider smooth bound-
aries with relative indices of refraction ranging from η≈1.0 . . . 1.5,
although our method could in principle be trained to work with
other BSDFs. We refer the reader to Pharr et al. [2016] for a review
of surface light transport.

The BSSRDF. Equations (1) and (2) together constitute a full spec-
ification of subsurface light transport. Given an incident radiance
function Li (x,ω) defined for all x ∈ ∂Ω and outward-facing direc-
tionsω (i.e. nx ·ω > 0), they allow us to solve for the corresponding
outgoing illumination Lo (x,ω), for example using a volumetric path
tracer. Since the underlying physical process is entirely linear, the
relationship between outgoing and incident radiance can be con-
densed into a continuous scattering kernel S :

Lo (x,ω) =

∫
∂Ω

∫
S2

Li (x′,ω ′) S(x′,ω ′, x,ω) dω ′ dx′. (3)

The function S is known as the bidirectional scattering-surface re-
flectance distribution function (BSSRDF). At a first glance an eight-
dimensional function, the BSSRDF is in factmuch higher-dimensional
due to its dependence on the properties of the interior medium
φΩ = (σt ,σs ,д) and the shape of the boundary ∂Ω.

The goal of this article is to realize a probabilistic generative
algorithm for sampling (x′,ω ′) proportional to Sφ (·, ·, x,ω) given
a fixed incident ray ri = (x,ω) and parameters φ = (φΩ,φ∂Ω) de-
scribing the interior and boundary. Note that the dependence of Sφ
on both ri and φ is highly nonlinear—we rely on neural networks to
learn these nonlinear dependencies from ground-truth data.

Similarity theory. Consider a hypothetical medium without ab-
sorption (σa = 0) and maximal forward scattering (д = 1) that
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causes no angular deviation of light. For all intents and purposes,
such a material is equivalent to vacuum regardless of its density.
This observation applies more broadly: for any set of medium pa-
rameters φΩ , we can find similar alternative parameters φ ′Ω . The
underlying theory of similarity relations was studied by Wyman et
al. [1989], who proved equivalence under directionally band-limited
illumination. We exploit similarity theory to re-parameterize φΩ in
a more perceptually uniform space, improving training performance.
Higher-order similarity relations were studied by Zhao et al. [2014]
and could also be used with our method.

Variational autoencoders. To our knowledge, variational autoen-
coders have not been used in rendering to date, hence we provide a
review motivated by the requirements of radiative transport. Our
discussion roughly follows Doersch [2016].

Subsurface scattering can be identified with a set of unobserved la-
tent variables z ∈ Z that fully characterize the underlying stochastic
process. Latent here refers to our inability to know the precise value
of z that caused light to eventually leave the surface at a particular
position x ∈ ∂Ω. One choice that clearly fits this description is the
path z = (z1, . . . , zn ) of internal scattering events (where z1 = xi
and zn = x). However, the main objective of this work is to find an
alternative that sidesteps the complexities of the high-dimensional
space of interior light paths.
An arguably easier sampling technique could e.g. first decide

whether to focus on the front or back surface of a potentially thin
surface region as seen from x, draw a sample from a suitable distri-
bution on a Euclidean domain, and then map it onto the boundary
∂Ω, where each step uses information encoded in an associated
latent vector. Although such an algorithm is not readily available, it
should be clear that dimensionality of Z can be much smaller than
the full path space.
We use a variational autoencoder (VAE) [Kingma and Welling

2013] to learn a suitable mapping between sampled positions and
latent variables z. The VAE consists of two parts: a neural network
g in the role of a high-capacity function approximator maps an
as-of-yet unspecified vector of latent variables z to a surface posi-
tion g(z |θ ,φ)—this is referred to as decoding z. A separate encoder
network q(x |θ ,φ) takes a surface position x as input and returns
randomly sampled latent variables corresponding to light transport
that produces x with high probability. Both g and q are conditioned
on trainable parameters θ of the neural networks and a descriptor
φ characterizing the local surface and material properties. We will
omit both for readability. Note that the encoder network internally
draws samples from a probability distribution, hence q is a random
variable. Although g is deterministic given z, the following discus-
sion simplifies if we consider it to be a normally distributed quantity
with density px(x | z) = N(x; g(z),σ 2) and a small variance σ 2. In-
tegrating over the latent variables then yields the marginal density
produced by the decoder:

px(x) =
∫
Z
px(x | z)pz(z) dz, (4)

where pz(z) is the distribution of the latent variables. The aforemen-
tioned requirement that the encoder q produces latent variables
which decode to x with high probability can be made precise by

considering the Kullback-Leibler divergence between these distri-
butions:

D[pq(z |x) ∥ pz(z |x)] (5)
= Ez∼q(x)

[
logpq(z |x) − logpz(z |x)

]
and an application of Bayes’ theorem to the second term yields

= Ez∼q(x)
[
logpq(z |x) − logpx(x | z) − logpz(z)

]
+ logpx(x)

which can be rearranged as

logpx(x) − D[pq(z |x) ∥ pz(z |x)]

= Ez∼q(x) [logpx(x | z)] − D[pq(z |x) ∥ pz(z)] (6)

The above equation encapsulates the core of the variational autoen-
coder: the terms on the left hand side are both desirable optimization
objectives that are challenging to compute or optimize individually.
The first, logpx(x), is the log-likelihood of the generator, which we
would like to maximize for values x0, x1, . . . drawn from a reference
distribution, and the second KL-divergence term is the objective
from Equation (5). Due to the equality, we can simultaneously han-
dle both objectives by applying gradient ascent to the tractable
right-hand side instead.
The standard VAE construction introduces two assumptions at

this point—the first is that the latent variables are distributed ac-
cording to a standard normal distribution, which is reasonable since
z can internally be warped to any suitable distribution as long as
the encoder and decoder have high capacity and Z is sufficiently
high-dimensional. Furthermore, it is assumed that q consists of a
deterministic neural network portion that computes the mean µ and
a diagonal covariance matrix Σ of a multivariate normal distribution
that is sampled to produce z. This provides an explicit expression
for the second term on the right hand side of Equation (6):

D[pq(z |x) ∥ pz(z)] =
1
2

[
tr Σ + µTµ − dimZ − log det Σ

]
(7)

The expectation term in Equation (6) is approximated using a 1-
sample Monte Carlo estimator that encodes and decodes x once:

Ez∼q(x) [logpx(x | z)] ≈ logpx(x |q(x)) = logN(x; g(q(x)),σ 2). (8)

After optimizing Equation (6) with respect to the neural network
coefficients θ for many sampled material configuration φi ∈ Φ, the
VAE can generate samples that approximately follow the reference
distribution Sφ . For this, we simply discard the encoder portion and
directly feed the decoder with normal variates.

4 METHOD
We now turn to the specifics of our BSSRDF model. We discuss
central assumptions and present our neural network architecture
and associated training procedure. Following this, we introduce
geometry and material descriptors and explain how the model is
used at render time.

Assumptions. Existing models for subsurface scattering generally
assume that the BSSRDF factorizes into a product of the form

S(x′,ω ′, x,ω) = Sd (ω
′) Sp (∥x′ − x∥) Sd (ω), (9)

where Sd (ω) = Ft (θ )/π is directionally diffuse term modulated by
the boundary’s Fresnel transmission, and Sp is a radially symmetric
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Fig. 2. Architecture of our learned BSSRDF at render time. The input consists of a set of features (blue) characterizing both material parameters and the local
geometry of a shading point. These features are transformed by a deterministic feature network (green) shared by later parts of the model. A scatter network
(yellow) concatenates the transformed features with a normally distributed 4D sample and outputs a 3D position sampled from the learned distribution. The
absorption network also takes the transformed features as input and outputs a constant that scales the resulting distribution to support absorbing materials.

1D function or a more general 2D function [Frisvad et al. 2014]
representing the solution of a plane-parallel light transport problem.
Our model generalizes this factorization to

S(x′,ω ′, x,ω) = Sd (ω
′) Sp (x′, x,ω) (10)

where Sp has a complex learned dependence on all of x, x′,ω, as
well as the shape of the boundary ∂Ω. Theω ′ argument is handled
as before—in practical terms, this means that our algorithm samples
outgoing positions x′ on the boundary, while the outgoing direc-
tion is handled using standard techniques (e.g. multiple importance
sampling of Sd (ω ′) and light sources). Section 6 discusses ways in
which this last assumption could be removed in the future.

Architecture. Our BSSRDF model consists of three major concep-
tual units shown in Figure 2. Note that this illustration depicts the
usage at render time, while training uses a different arrangement
discussed shortly.
When the BSSRDF model is sampled at a particular incident lo-

cation x, we first extract a feature descriptor characterizing the
local material and geometric properties. The features influence both
the characteristic shape of the BSSRDF and its overall scale in ab-
sorbing materials, and these two aspects are handled in separate
branches of our architecture. Part of the calculation that controls
their dependence on the input features should arguably be shared
by both branches, and our architecture reflects this: the features first
pass through a dedicated feature network consisting of three fully
connected layers with rectified linear units as activation functions,
which output a 64-dimensional feature vector.

The scatter network takes the pre-processed feature vector and
concatenates it with a four-dimensional normal variate to generate a
3D position from the learned distribution using three fully connected
layers. Note that the scatter network is simply the decoder g(z) of our
trained variational autoencoder, and the normal variate constitutes a
sample from the latent distributionpz(z). The jointly trained encoder
q(x) , which is separate from the feature network and not shown
in Figure 2, is not needed at render time and can be discarded. We

observed superior performance when using a latent space, whose
dimension exceeds that of the target distribution (2D), hence we use
a four-dimensional latent variables z.

The scatter network is trained using samples generated by a volu-
metric path tracer, which uses standard techniques (e.g. importance
sampling, Russian Roulette, etc.) to ensure that generated samples
have uniform importance weights. This, however, means that one
crucial piece of information is still missing: what fraction of incident
light eventually leaves the surface without being absorbed along
the way? This fraction is a function of the input position, geometry,
and material properties. To support absorbing materials, we must
therefore also regress a scale factor for the distribution g(z), which
is the role of the absorption network. This part is independent of z
and can hence branch off without access to the latent variable. We
use two progressively smaller fully connected layers and a sigmoidal
activation function that ensures an output in the range [0, 1].

Projection. The use of simplified domains is a general source of
difficulty in the context of BSSRDF importance sampling: the gener-
ated positions generally do not lie on the scene manifold M, and
this discrepancy must be reconciled before the BSSRDF is usable in
physically based rendering systems.

For instance, many prior BSSRDF models assume that S factorizes
into a product, whose spatial component is a radially symmetric
function that only depends on a scalar radius r = ∥x′ − x∥ (Equa-
tion 9). Sampling S then involves generating a radius r ∼ Sp and
azimuth ϕ ∼ U (0, 2π ), at which point the resulting polar coordinate
must be projected onto underlying surface. A number techniques
have been proposed to carry out such a projection using ray trac-
ing [Jensen et al. 2001; King et al. 2013; Walter et al. 2012].
The central difficulty here is that the surface is not flat. In fact,

the intersection with an ε-ball M ∩ B(ε) may contain an arbitrarily
small or even unbounded amount of surface area rather than the
expected amount πε2. This discrepancy causes energy conservation
issues in all plane-parallel BSSRDFs: depending on how projection
is implemented, they produce conspicuous dark regions or energy
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Fig. 3. Our shape descriptor approximates the local geometry using a low-order polynomial that encodes an implicit surface approximation. This figure
visualizes polynomial coefficients in a tangential coordinate system computed using a moving least squares fit. Different parts of the descriptor identify
features including components of surface normals, curvature, knobs, and handles.

gains that can even cause the rendering process to diverge (Sec-
tion 5). This lack of energy conservation is one of the reasons why
BSSRDF models have fallen out of favor in recent years, with ma-
jor rendering systems falling back to brute-force sampling of the
RTE [Christensen et al. 2018; Fascione et al. 2018].

Our approach is to model the surface geometry using a trivariate
degree-3 polynomial P(x) = c1 + c2x + c3y + . . . c20z3 that defines
an implicit surface in a suitably chosen neighborhood of a shading
point. This neighborhood may also encompass the opposing side
of a surface, which is important when rendering thin regions of an
object. The coefficients c1 . . . c20 are part of the descriptor provided
to the feature network (see Figure 3 for a visualization), and the
network is trained to sample positions on the zero level set (i.e.
P(x) = 0) of this polynomial.

This does not completely solve the problem, however: although
our network indeed learns to generate points x that are very close to
the zero level set, they are not guaranteed to satisfy P(x) = 0 exactly.
Furthermore, the polynomial is only an approximation of the true
scene geometry, hence a projection is still needed. The polynomial
does, however, provide an excellent clue regarding where a nearby
surface can be found—specifically in the direction of the scaled
gradient −P(x)∇P(x), where

∇P(x) =

c2 + 2c5x + · · ·

c3 + 2c8y + · · ·

c4 + 2c10z + · · ·

 . (11)

In practice, we trace rays in both directions ±∇P(x) and use the
closer intersection if multiple are found. This scheme is guaranteed
not to introduce additional energy, and the shape-adaptivity tends
to resolve issues with energy loss encountered by prior work. We
discuss several examples later in Section 5.

Material descriptor. The second input of the feature network is a
small tuple of coefficientsφ∂Ω characterizing thematerial properties

of both boundary and interior. The parameterization of these inputs
is in essence arbitrary but has a significant effect on the network’s
training and generalization performance. We seek a parameteri-
zation that is as perceptually uniform as possible, meaning that a
small change φ∂Ω + δ should lead to a predictable and proportional
change in a certain aspect of the material appearance. Preferably,
the parameter range should also be bounded to a known interval.
The RTE and boundary conditions discussed in Section 3 are

dependent on the index of refraction η, extinction σt , scattering
coefficient σs and scattering anisotropy д. Although in principle
admissible, these parameters are a poor choice due to their non-
uniformity and redundancy. For instance, σs and σt are both un-
bounded and specify collision rates for certain types of medium
interactions per unit distance, controlling the overall density and
albedo of the medium. However, the density of a medium is also
related to the size of the object containing it: scaling the exterior
geometry by λ is equivalent to scaling σs and σt by λ. To avoid this
redundancy, we can instead use the scattering albedo defined in
terms of their ratio α = σs /σt ∈ [0, 1].

The second problematic aspect is the dependence on anisotropy д,
which controls two significant aspects of the appearance. The most
apparent effect is that the medium becomes progressively less dense
asд → 1 (Section 3) whichwewould rather like to encode separately
using an appropriate re-scaling of the geometry. The second effect
is a disproportionately higher increase of translucency around thin
regions and silhouettes. To separate these two effects, we rely on
first-order similarity theory [Wyman et al. 1989], which provides
related reduced parameters

σ ′
s = (1 − д)σs , σ ′

t = σa + σ
′
s , α ′ = σ ′

s /σ
′
t , д′ = 0 (12)

of an isotropic medium that is similar in appearance and consider-
ably less dense if the original mediumwas highly forward-scattering
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(д ≈ 1). We use the reduced extinction σ ′
t to scale the polynomial fit-

ting kernel (see Equation 16) and retain the non-reduced anisotropy
д to learn the effect of anisotropy on thin regions and silhouettes.

The last step concerns the albedo α ′ which indicates the fraction
of incident illumination that remains after interacting with one of
the particles that make up the reduced medium. Since light tends to
scattermany times before leaving the medium, the relation between
α ′ and the effective albedo α ′

eff of the object when observed from the
outside is highly nonlinear (Figure 4). We rely on a bijectivemapping

1.0

1.00.0

Fig. 4. The relation between reduced and effective albedo [Pharr et al. 2016].

proposed by Pharr et al. [2016] that approximately relates these two
quantities, providing a more perceptually uniform parameterization.

α ′
eff = 1 − 1

8 log(e8 + α ′(1 − e8)). (13)

Our final set of material parameters then consists of the index of re-
fractionη, the effective albedoα ′

eff , and the non-reduced anisotropy д.

Neighborhood size. Our technique uses a polynomial fit (Figure 3)
to approximate the geometry in a local neighborhood. The choice of
this neighborhood is of crucial importance: an overly local fit will
be sensitive to minute shape variations that have limited influence
on the surrounding radiative transport, while a large neighborhood
will lack adaptivity.

The size of this neighborhood is inversely proportional to the
reduced extinction σ ′

t , which indicates the density of the medium.
Media with a higher albedo or anisotropy should generally also
require a larger neighborhood, but the influence of these parameters
is less clear. Ideally, our choice should be related to the spread of
samples x′ drawn from a ground-truth BSSRDF Sgt(x′,ω ′, x,ω)

realized via brute-force Monte Carlo simulation. We performed a
large set of such simulations in a plane-parallel configuration and
computed the median absolute deviation

MAD = median(∥x′k − x∥), (14)
which provides a robust estimator of the spread of a distribution that
is conceptually similar to variance. Here, x and x′k (k = 1, . . . ,N )

denote incident and outgoing positions, respectively. Based on the
resulting data, we fit a linear interpolant in д, α ′ and α ′

eff :

MAD(α ′,α ′
eff ,д) ≈

1
4д +

1
4α

′ + α ′
eff . (15)

0.0 0.2 0.4 0.6 0.8 1.0

α′
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0.0 0.2 0.4 0.6 0.8 1.0
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Fit
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Fig. 5. Left: medium absolute deviation of the scattered distance as a func-
tion of anisotropy and reduced albedo. Right: our fit.

Fig. 6. Our shape descriptor consists of a trivariate degree-3 polynomial that
approximates the input geometry in a local neighborhood. The four insets
on the right visualize the zero level set of polynomials fit to the highlighted
locations (exterior surface: brown, interior surface: red).

A visualization of the original data and our fit is shown in Figure 5.
Using the above function, we define the standard deviation σn of a
suitable neighborhood as

σn (α
′,д,σ ′

t ) = 2MAD(α ′,д) /σ ′
t . (16)

We scale the geometry by the reciprocal of this standard deviation
in order make our neural network invariant to changes in scene
scale and medium density.

Polynomial shape descriptors. Our local polynomial approxima-
tion is inspired by the moving least-squares algorithm of Shen et
al. [2004]. The main difference to their approach is our use of higher-
degree polynomials and smooth weighting kernels1.

Various challenges arise when fitting polynomials to the vertices
of a boundary ∂Ω defined in terms of a highly non-uniform tessella-
tion. To sidestep all such problems, we initially samplem uniformly
distributed points b1 . . . bm ∈ ∂Ω with associated surface normals
n1 . . . nm , where

m = max
{
1024, 2σ−2

n A(∂Ω)
}

(17)

grows in proportion to the surface area A(∂Ω) and neighborhood
size. We use the resulting point cloud as an approximation of the
original geometry and organize it in a k-d tree. Both sampled points
and the acceleration data structure are only required for precompu-
tation and can be discarded at render time.
To fit a polynomial to a neighborhood centered around a given

position x, we perform a weighted least-squares optimization that
minimizes the following quadratic energy

E(c) =
1
m

m∑
i=1

w(| |b′i | |)
[
Pc(b′i )

2 + | |∇Pc(b′i ) − ni | |2
]
+µ∥c∥2 (18)

where b′i = σ−1
n (b−x) andw(r ) = e−r

2/2 defines a Gaussianwindow
that preferentially weights constraints near x. The first term inside
the square brackets forces the polynomial to take on small values
1Shen et al. fit polynomials of order zero and use singular weighting kernels that must
be integrated over triangles using an involved semi-analytic quadrature scheme.
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Fig. 7. Visualization of several meshes in our training dataset. Each shape
is instantiated many times using randomly sampled transformations.

on the boundary ∂Ω, and the second term constrains its gradients
to point away from the boundary. The last term regularizes the
problem by penalizing solutions with large coefficients (we use
µ = 0.0001). We found it beneficial to also add a small number of
uniformly weighted point constraints as an additional regularizer.
For this we sample 32 points uniformly over the mesh and scale
their constraints by a constant of 0.01.

In essence, we search for a polynomial that behaves like a signed
distance function in the neighborhood of the boundary. We cast
Equation (18) into the associated normal equations and solve the
resulting 20 × 20 linear system using a Cholesky decomposition.
Figure 6 visualizes the polynomial surfaces fit to several neighbor-
hoods.
Note that the computation produces a polynomial P that is cen-

tered around the shading point x and expressed in scaled coordinates
where a distance of 1 unit corresponds to the neighborhood size
σn in world space. To accelerate optimization of Equation (18), we
clamp the weighting kernelw to zero after a distance of 3 standard
deviations and use the previously constructed k-d tree to find points
within this distance.

Adaptation to the incident direction. Thus far, we have not dis-
cussed how our model adapts to the incident direction ω. We do
so by rotating the point cloud (b′i ,ni ) into a coordinate system
where the z-axis corresponds to the initial propagation direction of
light. Our model learns to recognize this cue and uses it to produce
appropriately stretched-out and shifted distributions at glancing
angles.

To avoid potential inconsistencies during training and rendering,
we augment Equation 18 with a hard constraint c1 = 0, which en-
sures that a polynomial approximating the geometry near x indeed
passes through this point.

Training dataset. We train our model on a reference dataset of
paths generated using brute-force Monte Carlo simulation of trans-
port through geometry retrieved from a repository of CAD models
and 3D-scanned shapes of varying complexity [Jakob et al. 2015;
Myles et al. 2014]. We furthermore augment the dataset by instanti-
ating each shape a number of times using randomly sampled trans-
formations, which increases the diversity of the dataset particularly
with regards to the number of thin regions (Figure 7).

For each shape, we proceed to sample 100K incident positions
and directions per shape using uniform and cosine-weighted distri-
butions, respectively. Each sample is furthermore associated with
an independently chosen index of refraction η ∼ U (1, 1.5), effective
albedo α ′

eff ∼ U (0, 1) and anisotropy д ∼ U (0, 0.95). Once these pa-
rameters are decided, we are able to complete the feature vector
with the computed coefficients c1 . . . c20 of the local polynomial fit.

Polynomial path tracer. When simulating scattering directly on
the ground truth geometry, we often encounter configurations
where the polynomial shape descriptor cannot explain all light
transport phenomena. To reduce the difficulty of the learning task2,
we do not train directly on the input meshes, but rather generate
transport paths within the local polynomial surface approximations.
This implies that our networks should in principle be able to repli-
cate the training data from the provided features perfectly, in the
sense that the training data contains no information that is not
explained by the associated features. The role of the mesh dataset,
then, is to provide a straightforward way of generating random sets
of polynomials with the right statistics.

To simulate light transport in the polynomial representation, we
must intersect rays r(t) = o + t · d with the zero level set to find the
solution P(r(t)) = 0 with the smallest t > 0. Note that acceleration
techniques for signed distance functions [Keinert et al. 2014] are
not directly applicable—although the polynomial is optimized to
resemble a signed distance function near the boundary, our fit makes
no guarantees regarding its global behavior. We use a simplistic root
finding scheme that involves raymarchingwith a fixed step size until
the sign P(r(t)) changes, which is followed by Newton-Bisection
to locate the root given a bracketing interval. The step size must
be set appropriately to match the minimum size of features in the
shape dataset. Although more efficient methods are conceivable,
optimization of this step is of limited value since the polynomial ray
tracer only runs once to generate the training dataset. Generation
of the full training dataset requires around 30 minutes.
The volumetric path tracer uses Russian roulette [Pharr et al.

2016] at each iteration to guarantee that the final set of path vertices
has uniform weights. We exclude light paths where the light simply
passes through the object without interacting with the underlying
medium, since these paths are more easily handled separately at
render time. We refract incident directions into the material using
Snell’s law. Internal reflections do not generate training samples—we
only record paths after sampling a refraction towards the exterior.

Loss function. Training minimizes a joint loss function consisting
of three components:

LVAE (xi ) = D[pq(z |xi ) ∥ pz(z)]

+w0∥xi − g(q(xi ))∥H

+w1∥ai − a(ai )∥2 (19)

whereд is the decoder,q is the encoder, z are the latent variables, and
pq and pz denote associated densities compared using a Kullback-
Leibler distance D. The first part of Equation 19 is the VAE’s latent

2We initially trained with transport on the original geometry and found that the result-
ing unexplained “noise” acted as a significant regularizer that became an impediment
to the overall quality (in essence, the network learned to ignore the input features).
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variable term, which constrains the latent space to follow a standard
normal distribution. Together with the second term, they repre-
sent the maximum likelihood estimator introduced as part of the
discussion of the variational autoencoder in Section 3. We use a
Huber loss ∥ · ∥H instead of the regular L2 loss to make training
more robust. The third term constrains our absorption network to
match ground-truth estimates of absorption probabilities, which are
computed by an estimator that traces 1024 light paths at the same
incident location. We usew0 = 100 andw1 = 5000 (the absorption
takes on relatively small values and requires a higher weight to
ensure accuracy.)

Rendering. Usage of our BSSRDF in a physically based render-
ing system requires efficient access to local shape descriptors. We
precompute this information ahead of time by fitting polynomials
to local neighborhoods around each vertex of the mesh. We retain
the resulting coefficients and bilinearly interpolate them during
ray-triangle intersection.

Note that the previously discussed fit depends on the direction of
incidence, which would ordinarily prevent this type of precompu-
tation. Fortunately, we can simply perform the fit in world space
and suitably rotate the polynomial at render time. To do so, we
substitute the rotation matrix into the polynomial and expand the
resulting expression.

Sampling the BSSRDF produces a single position x′ ∈ ∂Ω drawn
from the learned distribution for a particular set of material features.
We then apply multiple importance sampling of the term Sd (ω

′) and
the scene’s emitters to estimate the integral over the final directional
dimension of Equation 10.

The sampling scheme discussed thus far assumes that the material
is monochromatic. To support colored materials, we use splitting to
estimate the integral with the BSSRDF for each color channel. To
avoid exponential growth of the resulting computation graph, we
only do this first time the BSSRDF is encountered along a path, after
which we randomly sample a single channel. A simpler approximate
alternative would be to assume that the material is monochromatic
at this point. Note that despite the added expense of splitting at the
first interaction, our method achieves competitive performance due
to the uniform weights of generated samples.
Similar to prior BSSRDF models [D’Eon and Irving 2011], our

method supports textured spatial variation if the material descriptor
is controlled by a custom shader that is evaluated at the shading
point x. From a physical viewpoint, such approaches are of course
dubious: the BSSRDF assumes homogeneity, and this type of query
is furthermore non-reciprocal. Nonetheless, such approximations do
not produce visible artifacts and are commonly used, e.g., to render
human faces like the one shown in Figure 9.

5 RESULTS
We implemented our model as a new Subsurface plugin in the
Mitsuba renderer [Jakob 2010] and generatedmost figures (including
timing comparisons in Figure 11) using Mitsuba’s standard path
tracer on cluster nodes with Intel Xeon 6132 processors and 128
GB of memory. Note that only a small portion of this memory was
actually used—our model adds an overhead on the order of 80 bytes

per vertex for polynomial coefficients, and storage of neural network
weights (∼ 153 KiB) is negligible.

We generate training data as part of an offline process using a
polynomial path tracer implemented in Mitsuba. One helpful ad-
vantage of learning from a physical simulation is the relative ease
of generating very large reference datasets: we sample 16 million
complete transport paths annotated with material parameters for
training and 4 million test samples for inspecting training conver-
gence (9 GiB on disk). The training data does not contain any of the
shapes that we use to demonstrate rendering of subsurface transport
in this article.
Due to our relatively shallow architecture and lack of convolu-

tional layers, we found that training using GPU acceleration yielded
little to no speedup, hence we performed all training on the CPU.
We jointly train all three networks with respect to the loss defined
in Equation 19, using 3.5 million batches of size 32, which takes
roughly 4 hours on a Intel Xeon node using 12 cores. Our training
implementation is based on Tensorflow [Abadi et al. 2015] and the
Adam [Kingma and Ba 2014] optimizer with a learning rate of 2·10−4.
After training concludes, we write the final set of coefficients to disk
for later use at render time.

When deployed in a physically based renderer, our model must be
evaluated millions of times per second, hence we require an efficient
implementation of the underlying arithmetic consisting mainly of
fixed-size matrix-vector multiplications (Figure 2). We initially tried
to export the Tensorflow computation graph to a native C++ im-
plementation using Tensorflow’s accelerated linear algebra (XLA)
just-in-time compiler but only obtained modest speedups relative to
the original Tensorflow graph. Following this, we manually imple-
mented the network in C++ using Eigen [Guennebaud et al. 2010],
which resulted in a speedup on the order of 200×.

We now evaluate the performance and accuracy of our model
compared to ground truth references and prior work, in partic-
ular the Forward Scattering Dipole [Frederickx and Dutré 2017],
the Directional Dipole [Frisvad et al. 2014] (both using sampling-
based implementations provided by Frederickx et al.) and Photon
Beam Diffusion [Habel et al. 2013] (using the implementation from
PBRT [Pharr et al. 2016], which we ported to Mitsuba to facilitate
timing comparisons). Note that PBRT’s photon beam BSSRDF uses
ray tracing-based projection [King et al. 2013] to map samples onto
the surface.

Soap blocks. Figure 1 shows several anisotropic soap blocks ren-
dered using photon beam diffusion and our method. Compared to
the relatively flat-looking rendering produced by the plane-parallel
dipolemodel, our shape-adaptivemodel increases scattering through
thin silhouette regions and improves contrast in regions with geo-
metric detail, producing a more realistic appearance and lower bias
compared to a path-traced reference (please see the supplement for
detailed comparisons including other methods). At equal render
time (including preprocessing), our model produces 311 samples
compared to 916 samples generated using photon beam diffusion.
Since our model yields uniform importance sampling weights, the
noise level in the rendered image is similar for both methods, despite
the difference in the number of samples.
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Fig. 8. Our BSSRDF model learns to sample point distributions that adapt
to the underlying geometry. The visualization shows sampled outgoing
positions (red) generated by our neural network architecture given inci-
dent locations (cyan). Note that the red points correspond to the “raw”
network output without the additional projection that would be applied
in actual usage.

Shape-adaptive distributions. Figure 8 visualizes several “raw”
point distributions produced on the highly curved botijo shape
that contains both knob-shaped extrusions and toroidal regions
(handles). The figure shows that our BSSRDF model indeed learns to
exploit the information contained in the local polynomial descriptor
to produce point sets that closely align with the underlying poly-
nomial (and hence, the input geometry). In actual usage, the points
are furthermore projected onto the underlying triangle mesh. We
do so by tracing rays along the gradient direction of the polynomial,
which leads to a particularly robust projection operation.

Energy conservation. Figure 9 highlights energy conservation
issues in standard BSSRDF techniques that map sam-
ples from a plane-parallel transport model onto a
curved surface. This involves integrating incident
radiance over an ε-ball centered around the shading
point (blue), whose radius is related to the size of the
diffusion kernel, typically using a set of orthogonal projections [King
et al. 2013]. Since the surface is not flat, the projection may “find” an
arbitrarily large or small amount of surface area. Without additional
precautions, this introduces unwanted energy into the simulation
that can even cause the rendering process to diverge (Figure 9a).
The projection may also be constrained to collect illumination from
at most a single surface intersection per projection, which simply
turns excessively bright regions into conspicuous dark patches (Fig-
ure 9b). In contrast, our model generates points that are already very

(a) Beam Dipole (variant 1) (b) Beam Dipole (variant 2) (c) Ours

Fig. 9. Energy conservation. Modern diffusion dipole models rely on ray
tracing to project sampled 2D positions onto the underlying surface. A
fundamental challenge of this projection is that the intersection of an ε -
ball with curved scene geometry may contain an arbitrarily small or large
amount of surface area rather than the expected amount πε2. Depending on
how the resulting models are normalized, they either suffer from unrealistic
energy gains (a) or losses (b). Both sample generation and projection of our
model (c) are guided by a local approximation of the underlying shape. Our
model never creates energy, and the shape-adaptivity significantly reduces
energy loss in practice.

close to the surface due to the underlying polynomial model, whose
gradient enables a particularly robust projection operation. Our pro-
jection never introduces additional energy and significantly reduces
issues with energy loss encountered by plane-parallel transport
models (Figure 9c).

Forward-scattering medium. Figure 10 shows a checkerboard light
source viewed through a tapered dielectric material containing a
highly forward-peaked medium. The checkerboard pattern becomes
increasingly attenuated and blurry towards the thicker end due to
multiple anisotropic scattering. The directional dipole, the forward
dipole, and our method are able to reproduce this effect, while a
classical dipole produces an opaque surface appearance. Interest-
ingly, small differences between our model and the reference can
also be found in the polynomial reference.

Comparison matrix. Figure 11 shows a large matrix of render-
ings of varied shapes made with different methods and material
parameters: from top to bottom, we show results produced using
a volumetric path tracer (“Path Tracing“), a volumetric path tracer
with diffuse angular response at the outgoing position (“PT. [dif-
fuse]”) matching our factorization in Equation 10. The next row
additionally replaces the geometry using a local polynomial model
after refracting into the object, and hence corresponds closest to
our learned model (“PT. [poly]”). The fourth row is our model, and
the next three are photon beam diffusion, the directional dipole, and
the forward scattering dipole.
As in the teaser scene, the beam diffusion model produces a

relatively flat appearance (see e.g. the crevices of the wavy shape or
the bunny in the two first columns). A more striking difference is the
energy loss in columns 3, 4, and 5. The diffusion radius is relatively
large compared to the geometry given these material parameters,
causing the convolution with the diffusion kernel to find insufficient
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(a) Reference (b) Beam Dipole (c) Directional Dipole (d) Forward Dipole (e) PT [polynomial] (f) Ours

Geometry RMSE=689.693 RMSE=0.101 RMSE=5.263 RMSE=0.021 RMSE=0.027

Fig. 10. Rendering of a forward scattering medium (д = .95, α = .99999) enclosed in a tapered shape, illuminated by a checkerboard light source. The
directional dipole (c), the forward dipole (d) and our learned BSSRDF (f) account for the shape-dependent decay and directional blur. In our case, the
rendering reproduces the appearance of the polynomial path tracer (e), which is a good approximation of the ground-truth transport (a). The rendering by
photon beam diffusion [Habel et al. 2013] (b) is almost opaque. Images (b)–(f) were rendered using 256 samples per pixel. For each technique we visualize the
relative L2 error compared to the converged ground-truth rendering (a).

surface area. This is particularly apparent in the progression from
larger to smaller cubes, cylinders, and spheres.
The forward dipole model produces excellent results for many

configurations—among the dipole methods we compare to, it is
the only BSSRDF model with a non-separable dependence on both
incident and outgoing direction. A fundamental limitation of the
model appears to be its importance sampling technique. At 1024
samples per pixel, it produces renderings with significant variance
exceeding that of the Monte Carlo reference, using the highest
amount of computation on average.
We observe excellent agreement between the learned BSSRDF

and the original path-traced reference. As before, small deviations
between our model and the reference can typically also be found in
the polynomial reference. This seems to indicate that future work on
local shape descriptors could further improve the quality of learned
BSSRDF representations.

Light transport through slabs. Figures 12 and 13 visualize light
transport through slabs of varying thickness and anisotropy. In
Figure 12, all illumination arrives perpendicularly from the top,
while Figure 13 also shows the dependence on the angle of incidence.
In each case, we plot the distribution of emitted radiance at the
top and bottom surfaces, and the left side shows a ground-truth
reference produced by a volumetric path tracer. The histograms
demonstrate that our model has learned to predict the spread, offset,
slant, and intensity of the distribution of scattered light on both
surfaces. We remark that our model was not specifically trained
on parallel slabs that were used to generate this figure. One visible
difference is that the distributions produced by our model are often
less regular than the reference solution. We only noticed this in
visualizations of the raw profiles, and the difference seems to have
little practical relevance on usage in a physically based renderer.

6 CONCLUSION
We introduced a technique for learning an adaptive and scene-
independent BSSRDF model from ground truth volumetric transport
simulations. Our method avoids many limiting assumptions of prior
analytic models regarding the planarity of surfaces and isotropy of
volumetric transport, and it significantly generalizes the built-in
notion of spatio-directional separability.

Our new algorithm does still share certain limitations with prior
models—for instance, it assumes that the dependence in the outgoing
direction is essentially diffuse and separable from the remainder of
the model. This is certainly not true in thin anisotropic materials,
where scattered radiation retains a narrow directional profile. While
our training learns from a reciprocal light transport simulation, the
network architecture is not built specifically to enforce reciprocity of
the resulting model. We generally observed that errors produced by
our method were also found in reference images produced by a path
tracer using the same polynomial approximation, hence descriptors
are a promising direction for further quality improvements. Another
limitation is that our model implements a point sampling operation
but does not provide a natural way of evaluating the associated
density function. This is fine for usage in unidirectional rendering
algorithms where knowing the sampling weight suffices, but may
prove to be an impediment in other settings. Interestingly, these
limitations are related: to use a fully non-separable BSSRDF in a
physically-based renderer, a density function is a strict requirement
to compute the material response given sampled positions on light
sources. We believe that both limitations may be addressed in the
future using an architecture based on invertible warps, such as the
Real NVP [Dinh et al. 2016] method that was recently extended by
Müller et al. [2018] and Zheng and Zwicker [2018].

Overall, we believe that our work makes a convincing case that a
probabilistic generative model can be trained in a scene-independent
way to replace a costly sampling process within a largerMonte Carlo
simulation.

ACM Trans. Graph., Vol. 38, No. 4, Article 127. Publication date: July 2019.



127:12 • Vicini, Koltun and Jakob
R

ef
.

Pa
th

Tr
ac

in
g

8.29 m

RMSE = 0.110

PT
[d

i�
us

e]

8.33 m

RMSE = 0.044

PT
[p

ol
y.

]

9.42 m

RMSE = 0.060

O
ur

s

5.64 m

RMSE = 0.030

B
ea

m
D

ip
ol

e

6.72 m

RMSE = 0.069

D
ir.

D
ip

ol
e

14.00 m

RMSE = 0.052

Fw
d.

D
ip

ol
e

53.97 m

RMSE = 0.017

σ′t = 20

α′ = 0.6500

g = 0.90

46.09 m

RMSE = 0.051

46.58 m

RMSE = 0.003

40.79 m

RMSE = 0.010

12.20 m

RMSE = 0.011

7.38 m

RMSE = 0.037

16.61 m

RMSE = 0.069

85.48 m

RMSE = 0.824

σ′t = 20

α′ = 0.9800

g = 0.90

63.05 m

RMSE = 0.005

65.81 m

RMSE = 0.101

72.36 m

RMSE = 0.039

23.40 m

RMSE = 0.053

5.31 m

RMSE = 0.280

9.11 m

RMSE = 2.527

36.88 m

RMSE = 5.948

σ′t = 1

α′ = 0.9800

g = 0.99

16.64 m

RMSE = 0.042

18.59 m

RMSE = 0.054

20.80 m

RMSE = 0.041

23.19 m

RMSE = 0.039

4.86 m

RMSE = 0.277

7.00 m

RMSE = 0.622

27.08 m

RMSE = 63.119

σ′t = 1

α′ = 0.9800

g = 0.90

10.56 m

RMSE = 0.043

11.92 m

RMSE = 0.025

14.00 m

RMSE = 0.028

14.82 m

RMSE = 0.014

5.26 m

RMSE = 0.237

6.68 m

RMSE = 0.219

27.17 m

RMSE = 10.361

σ′t = 1

α′ = 0.9800

g = 0.00

54.96 m

RMSE = 0.054

54.60 m

RMSE = 0.003

47.06 m

RMSE = 0.007

11.06 m

RMSE = 0.007

6.10 m

RMSE = 0.019

12.66 m

RMSE = 0.051

67.20 m

RMSE = 0.915

σ′t = 100

α′ = 0.9800

g = 0.90

197.42 m

RMSE = 0.840

186.27 m

RMSE = 0.036

170.32 m

RMSE = 0.033

15.64 m

RMSE = 0.032

6.61 m

RMSE = 0.120

20.37 m

RMSE = 0.097

111.71 m

RMSE = 22.546

σ′t = 50

α′ = 0.9995

g = 0.90

154.15 m

RMSE = 0.464

156.22 m

RMSE = 0.044

138.14 m

RMSE = 0.046

15.38 m

RMSE = 0.049

4.90 m

RMSE = 0.075

15.29 m

RMSE = 0.081

112.60 m

RMSE = 27.492

σ′t = 50

α′ = 0.9995

g = 0.90

Fig. 11. Assorted shapes rendered using our model and other techniques for subsurface scattering, covering a range of material parameters (first 6 columns)
and lighting conditions (last 2 columns). Note that an interactive version of this figure is provided in the supplemental material. Ref. is a path traced reference
with 16-64K samples/pixel; the remaining rows all use 1024 samples/pixel and are followed by relative L2 error maps. Insets specify rendering times and RMSE
error values. Path Tracing denotes a standard volumetric path tracer, PT. [diffuse] is a path tracer that diffusely scatters light entering the object, PT. [poly.] is a
path tracer that additionally uses the same polynomial surface approximations as our neural network. Beam Dipole [Habel et al. 2013], Dir. Dipole [Frisvad
et al. 2014] and Fwd. Dipole [Frederickx and Dutré 2017] are previous state-of-the-art dipole methods.
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Fig. 12. Visualization of the distribution of scattered radiance on slabs of varying optical thickness illuminated by a perpendicularly incident collimated beam.
We compare our method to ground-truth volumetric path tracing for different material configurations with a constant scattering albedo of α = 0.99. Despite
not having been trained on parallel slabs, our model correctly predicts the spread, offset, and intensity of the distribution on both surfaces.
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Fig. 13. Visualization of the distribution of scattered radiance on slabs of varying optical thickness illuminated by collimated beam with a varying angle of
incidence. All insets use a fixed scattering albedo of α = 0.99 and anisotropy of д = 0.75. Despite not having been trained on parallel slabs, our model learns
to generate slanted profiles at the top surface, and it accounts for the spread and offset of the distribution at the bottom surface.
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