
Field-Aligned Online Surface Reconstruction

NICO SCHERTLER, New York University and TU Dresden

MARCO TARINI, Università dell’Insubria and ISTI - CNR

WENZEL JAKOB, École Polytechnique Fédérale de Lausanne (EPFL)

MISHA KAZHDAN, Johns Hopkins University

STEFAN GUMHOLD, TU Dresden

DANIELE PANOZZO, New York University

...

Fig. 1. Multiple successively acquired 3D scans (top row) are interactively integrated into a coarse base mesh (botom row). The user sees the final reconstructed
result at all times, enriched with textures that encode colors and displacement (right-most). The user can decide to reconstruct a triangle or a quad-dominant
mesh, which has high isotropy and regularity. [Original Sculpture Courtesy of Michael Defeo, mesh statistics can be found in Table 1]

Today’s 3D scanning pipelines can be classiied into two overarching cat-

egories: oline, high accuracy methods that rely on global optimization

to reconstruct complex scenes with hundreds of millions of samples, and

online methods that produce real-time but low-quality output, usually from

structure-from-motion or depth sensors. The method proposed in this paper

is the irst to combine the beneits of both approaches, supporting online

reconstruction of scenes with hundreds of millions of samples from high-

resolution sensing modalities such as structured light or laser scanners. The

key property of our algorithm is that it sidesteps the signed-distance com-

putation of classical reconstruction techniques in favor of direct iltering,

parametrization, and mesh and texture extraction. All of these steps can be

realized using only weak notions of spatial neighborhoods, which allows

for an implementation that scales approximately linearly with the size of

each dataset that is integrated into a partial reconstruction. Combined, these

algorithmic diferences enable a drastically more eicient output-driven

This work was supported by the NSF CAREER award 1652515, NSF award 1422325,
MIUR project DSurf, and a fellowship within the FITweltweit program of the German
Academic Exchange Service (DAAD).
© 2017 ACM. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The deinitive Version of Record was published in ACM
Transactions on Graphics, https://doi.org/http://dx.doi.org/10.1145/3072959.3073635.

interactive scanning and reconstruction worklow, where the user is able to

see the inal quality ield-aligned textured mesh during the entirety of the

scanning procedure. Holes or parts with registration problems are displayed

in real-time to the user and can be easily resolved by adding further localized

scans, or by adjusting the input point cloud using our interactive editing

tools with immediate visual feedback on the output mesh. We demonstrate

the efectiveness of our algorithm in conjunction with a state-of-the-art

structured light scanner and optical tracking system and test it on a large

variety of challenging models.

CCS Concepts: · Computing methodologies→ Mesh models;

Additional KeyWords and Phrases: Surface Reconstruction, Parameterization

ACM Reference format:

Nico Schertler, Marco Tarini, Wenzel Jakob, Misha Kazhdan, Stefan Gumhold,

and Daniele Panozzo. 2017. Field-Aligned Online Surface Reconstruction.

ACM Trans. Graph. 36, 4, Article 77 (July 2017), 13 pages.

DOI: http://dx.doi.org/10.1145/3072959.3073635

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

https://doi.org/http://dx.doi.org/10.1145/3072959.3073635

77:2 • Schertler, N. et al.

1 INTRODUCTION

3D scanning and reconstruction are historically independent prob-

lems. During a typical scanning session, a coarse preview of the

acquired data is shown, and it is only once all scans are available

that a reconstruction algorithm consolidates them into a single

consistent 3D model.

Diferent techniques to preview the scanned data exist: collections

of range scans can be rendered directly, often after down-sampling,

by splatting point primitives [Rusinkiewicz and Levoy 2000] or by

superimposing triangulated height ields (e.g. [Cignoni et al. 2011]);

other systems update a relatively low-res volumetric distance-ield

representation and interactively ray-cast it [Izadi et al. 2011; New-

combe et al. 2011]. In either case, the inal, uniied, high-resolution

geometry is extracted after the scanning session, using oline mesh

reconstruction algorithms (for example, based on Poisson surface

reconstruction [Kazhdan et al. 2006]). Depending on the intended

application, this is followed by semiregular remeshing, or simplii-

cation, which is then parameterized; inally, the original high fre-

quency details or additional properties like colors are reintroduced

as textures. While this worklow has been widely used in the last

three decades, it hides a subtle, but major limitation: the preview is

not a faithful representation of the inal model and thus may not

indicate artifacts like the ones due to poor registration, missing

data, insuicient sampling density, etc. This leads to a frustratingly

time-expensive worklow, where the user has to go back to acquire

additional data (or modify the acquired point clouds) and then re-

peat the full reconstruction step, which can require from minutes

to hours depending on the size of the model. The authors’ own

experience scanning numerous models using this tedious worklow

motivated the development of the algorithm proposed in this work.

We propose a novel approach for online mesh reconstruction,

which seamlessly integrates high resolution scanning and high qual-

ity reconstruction. The inal reconstructed, semiregular, and tex-

tured model is computed on-the-ly as new geometry is acquired.

Our algorithm produces results comparable to state-of-the-art meth-

ods that rely on expensive global optimization, while supporting

online reconstruction with a cost that is approximately linear in

the size of the acquired data. Directly working with the inal recon-

structed model in lieu of a preview ofers major advantages over

traditional pipelines:

(1) Artifacts or missing parts are immediately visible and high-

lighted with visual aids, guiding the user during the scan-

ning process. Such visual feedback dramatically reduces

the scanning time, as new scans can be placed only when

actually needed

(2) Since our method generates semiregular medium resolution

meshes, where hi-frequency details are eiciently stored

as textures, it can achieve a faithful reconstruction using a

geometry budget that is very small compared to the input

point cloud size. Large-scale point clouds that cannot be

rendered interactively pose no problems, as they are simply

stored in virtual memory and paged when not in useÐthe

only requirement is that the reconstruction output its into

GPU memory. This allows our method to remain interac-

tive even when working with extremely large datasets on

commodity hardware.

(3) The reconstructed model serves as a proxy for interactive

editing tools that modify the original point clouds (e.g.

smoothing). After every edit, the inal reconstructed model

is immediately computed and shown.

(4) The model the user sees at any moment is the inal result

of the entire scanning and reconstruction pipeline. This

follows the WYSIWYG paradigm, which has never been

applied to an online 3D scanning pipeline before.

We rely on a two-level representation to ensure that partial recon-

structions can be viewed at interactive rates: the visible geometry

consists of a relatively coarse polygonal mesh generated using the

remeshing approach proposed in the Instant Field-Aligned Meshes

technique (henceforth referred to as IM), while detail maps encode

an ofset surface and color data.

There are two challenges in adapting Instant Meshes (IM) to the

context of online reconstruction. First, IM has poor locality: since

it relies on global optimization techniques, even a single new data

point could afect every location on the mesh, requiring a costly full

rebuild of the entire output. Second, the hierarchical solver in IM

requires a costly multi-resolution hierarchy which is invalidated

when new scans stream in and adjacency relations change.

We address the irst problem using an adaptive hierarchical error

criterion that allows such large-scale changes to take place while

dynamically limiting the amount of computation for localized small-

scale changes. The second problem is tackled making the following

observation with regards to the Laplace operator: While a łgoodž

deinition of the Laplacian requires an accurate notion of neighbors,

distances, and angles [Dziuk 1988; Pinkall and Polthier 1993] the dif-

ference between a łgoodž Laplacian and a łbad onež is pronounced

at higher frequencies. Having a łgoodž Laplacian is necessary for

many geometry-processing applications. However, in our context,

the Laplacian is only needed to solve difusion systems for low-

frequency solutions. This allows us to use an approximate Laplacian

deined over an approximation of a k-nn graph Ð a data-structure

that can be easily computed from a point cloud and eiciently up-

dated to incorporate new scan data.

To validate our contribution, we integrate it with a commercial

3D scanner and a commercial optical tracking system, and use it to

scan and reconstruct highly detailed and challenging models.

2 RELATED WORK

2.1 Ofline Reconstruction

Reconstructing surfaces from scanned points is a well-studied prob-

lem in computer graphics [Berger et al. 2014]. In the oline set-

ting, these approaches take as their input a set of points (pos-

sibly with normals) and output a manifold surface that interpo-

lates/approximates the input. In general, these methods can be char-

acterized as either combinatorial or implicit.

Combinatorial Algorithms. These approaches reconstruct the sur-

face by triangulating (a subset of) the point samples. Typically,

this is done by tetrahedralizing the points, marking the individual

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

Field-Aligned Online Surface Reconstruction • 77:3

tetrahedra as either internal or external, and then setting the bound-

ary faces to be the triangles of the reconstruction. Although the

earliest methods used the local shape of the cells to label the tetra-

hedra [Amenta et al. 2001; Bernardini et al. 1999; Boissonnat and

Oudot 2005; Dey and Goswami 2003; Edelsbrunner and Mücke 1994;

Podolak and Rusinkiewicz 2005], labeling techniques using global

approaches such as spectral [Kolluri et al. 2004], graph-cut [Hornung

and Kobbelt 2006; Labatut et al. 2009], and winding-number [Jacob-

son et al. 2013] partitioning have also been used.

These combinatorial methods often have provable properties

under appropriate sampling. However, they are inherently interpo-

latory and tend to reproduce the noise often present in scanner data.

Our approach also directly uses the point samples, but it is more

robust to noise and bad sampling since it relies on an underlying

surface parametrization.

Implicit Functions. To be robust to scanner noise, implicit methods

reconstruct an approximating surface by using the input points to

deine a function in 3D and then extracting the appropriate level-set

using Marching Cubes [Kazhdan et al. 2007; Lorensen and Cline

1987]. Most often, these methods reconstruct the signed distance

transform [Bajaj et al. 1995; Calakli and Taubin 2011; Carr et al.

2001; Curless and Levoy 1996; Hoppe et al. 1992; Mullen et al. 2010]

or the indicator function [Kazhdan 2005; Kazhdan and Hoppe 2013;

Manson et al. 2008]. They discretize the space of functions using

radial basis functions, B-splines, or wavelets, and solve the associ-

ated global linear systems using hierarchical approaches like fast-

multipole or multigrid.

While the above approaches often require solving a global linear

system to compute the surface, a number of methods have been

proposed that only require local scan information to deine the value

of the function [Fuhrmann and Goesele 2014; Ohtake et al. 2003].

These types of approaches tend to give a more eicient implemen-

tation at the cost of sacriicing some of the robustness provided by

global methods. Our approach achieves a similar quality, but works

directly on the point cloud: by sidestepping the use of an implicit

function, we reduce memory consumption and computational cost,

and we are able to seamlessly handle boundaries. In addition, the

meshes produced by our method are highly isotropic and do not

require remeshing.

Parameterization. Another representation that is useful for recon-

struction is a parameterization deined on the input data, e.g. on

multiple range scans [Pietroni et al. 2011]. They deine a global pa-

rameterization using a common manifold domain with appropriate

transition functions between the scans. Our approach also uses a pa-

rameterization of the input, but since our parameterization is local,

we can achieve signiicantly higher performance while sacriicing

only a small amount of parameterization regularity.

2.2 Online Reconstruction

With the advent of low-cost, high frame-rate, commodity scanners

like the Microsoft Kinect sensor [Microsoft 2010], there has been

a growing interest in online reconstruction. In this setting, scan

data streams into the system as the user moves a scanner around an

object (or within a scene) and the system integrates the data into

an evolving surface representation that is displayed interactively,

guiding the choice of location and orientation for subsequent scans.

To support such interactivity, existing methods [Newcombe et al.

2011; Rusinkiewicz et al. 2002] use a local surface representation,

describing the reconstructed surface using a truncated signed dis-

tance function [Curless and Levoy 1996]. The local representation

allows for parallelizable, space- and time-eicient updates of the

surface representation that only require the subset of the model in

the vicinity of the new scans to be changed. As a result, the cost of

updates in such systems is proportional to the size of the new scan

data, not the size of the entire reconstruction.

As with these earlier works, our goal is to support integration of

new scan data into an evolving mesh interactively. However, in our

work we use a hierarchical representation, presenting a new online

method that simultaneously preserves the robustness of global ap-

proaches and maintains the eiciency of local solutions. Moreover,

we directly produce a semi-regular, feature-aligned, and (option-

ally) quad-dominant mesh, whereas all previous online methods can

only ofer irregular triangle meshes. In the traditional online setup,

regularity, feature-alignment, and conversion to quad-dominant

meshes, which are recognized as necessary for many downstream

applications [Bommes et al. 2012], can only be achieved through

post-processing remeshing phases.

3 BRIEF OVERVIEW OF INSTANT MESHES

This section reviews key concepts of ield-aligned parametrization

methods [Bommes et al. 2012; Vaxman et al. 2016], with a partic-

ular focus on the Instant Field-Aligned Meshes approach [Jakob

et al. 2015] (IM), upon which our algorithm builds. We restrict the

discussion to the quad-dominant case, and we refer to the original

paper for its extension to triangular meshes. In Section 4, we discuss

speciic changes required to adapt IM to the online setting.

The original IM algorithm takes as its input a point cloud or

irregular mesh and a target edge length, and outputs a semi-regular

quad-dominant mesh with approximately constant element size.

Fields. Field-aligned parametrizationmethods are based on the ob-

servation that assuming such a quadrangulation already exists, one

can easily use it to derive a global parametrization whose gradients

are aligned with the mesh’s edges. This observation is then reversed

to compute a ield-aligned mesh by irst computing the gradients

of the parametrization, integrating them, and inally extracting the

mesh from the parametrization.

IM implements this idea encoding the gradients with an orienta-

tion (RoSy) ield [Palacios and Zhang 2007] that assigns a frame to

each point, aligned with the edges of the containing quad (repre-

sented by a unit vector that is unique up to rotation by an integer

multiple of π/2, Figure 2a). Instead of using a globally consistent

parametrization, IM uses a position (PoSy) ield to assign fractional

coordinates to each point, giving its position within the containing

quad (represented as an element of R3 that is unique up to trans-

lation along the integer lattice oriented with the directional frame

and scaled by the target edge length, Figure 2b).

The original IM pipeline is decomposed into three steps: irst,

an orientation ield is computed everywhere on the surface; then,

the orientation ield is used to deine a position ield; inally, a

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

77:4 • Schertler, N. et al.

(a) Orientation Field (b) Position Field

Fig. 2. Illustration of the fields used by the Instant Meshes technique.
(a) Neighboring point cloud vertices vi and vj representing surface ob-
servations (abstract shapes) with normals ni and nj store orientations oi
and oj (red arrows) that control the alignment of the output mesh. The
orientations satisfy a rotational symmetry (RoSy) condition, such that each
direction is part of an equivalence class with three other elements (grey
arrows); a hierarchical optimization scheme optimizes the field smoothness
subject to this symmetry. (b) The position field controls the fractional ofset
(green dot) of a local parameterization (regular grid) that is aligned with
the previously computed orientations and used to mesh the point cloud. A
similar positional symmetry (PoSy) defines translated versions of the ofset
(black dots at grid intersections) are equivalent. The position step then
optimizes the smoothness of the position field subject to this symmetry.

quadrangulation is extracted by clustering points whose positional

ield values fall into nearby positions to obtain the vertices of the

output mesh, and then connecting clusters to obtain the edges.

Smoothing. Obtaining the ields requires solving a difusion-like

system. For the orientation ield, if two points are adjacent, their

associated frames should be similar. For the position ield, if two

points are adjacent, the parameter of one point should be close to

the parameter of the other plus the the coordinates of the diference

in positions, expressed in the frame of the orientation ield.

IM uses similar approaches to solve these systems, subject to the

respective symmetry conditions. The two ields are initially set to

random values and iteratively optimized by means of a sequence

of local smoothing operations. Each iteration recomputes the ield

value of a point based on its immediate neighbors analogous to

explicit Laplacian smoothing [Taubin 1995]; accounting for the

RoSy and PoSy symmetries entails an exhaustive search through

the corresponding symmetry spaces. Neighbors are deined in terms

of graph adjacency. When the input is a mesh, the graph is the

connectivity graph of the mesh. When it is a point cloud, a k-nn

graph is used.

Hierarchy. To perform the smoothing eiciently, IM relies on

a simple multi-resolution hierarchy: the inest level corresponds

to the input points, and each progressively coarser layer contains

approximately half the number of points until only a single point is

left. The ields are then optimized in a coarse-to-ine manner, and

the optimization at each level is warm-started with the projected

solution from the previous level. For topological reasons, and to

maximize smoothness, both optimized ields may contain singular

points where local connectivity deviates from that of a regular grid.

The IM algorithm has several useful properties that we exploit

in our method: the most important is that all steps only rely on

weak notions of neighborhood that allows them to work with both

meshes and unstructured point clouds as input. In addition, the local

nature of the individual smoothing operations is well-suited for

streaming computation.

4 FIELD-ALIGNED SURFACE RECONSTRUCTION

In the following section, we explain the concepts that allow our

reconstruction pipeline to support interactive, online reconstruction.

Our pipeline takes as input a streaming set of scans of a 3D object

and outputs a textured surface. We represent the surface as the

combination of a coarse (semi-regular) quad or triangle mesh with

an ofset and color map associated with each face.

The core of our pipeline is a multi-resolution hierarchy, which

stores the original point and ield data as well as coarsened ver-

sions thereof, similar to the original IM pipeline. However, since the

requirements for surface reconstruction are fundamentally difer-

ent than those for remeshing, the design of our hierarchy deviates

signiicantly from the IM hierarchy.

Overview. Every action in our system can be described as a modii-

cation of the original point data, including addition of new scans, re-

registration, and point removal. For every modiication, our pipeline

executes the following steps to update the inal mesh (Figure 3): First,

we update the point data at the inest level of the hierarchy accord-

ing to the type of modiication (Section 4.2). Changes made during

this update are then propagated to the coarser levels (Section 4.3).

This ine-to-coarse pass is followed by a coarse-to-ine pass (Section

4.3), in which the direction and position ields are re-optimized.

During this pass, the pipeline adaptively re-optimizes the ields,

focusing the computation on regions in the iner level for which

non-negligible modiications were observed in the corresponding

region on the coarser level. This criterion generally localizes the

amount of re-computation associated with new data while allowing

large-scale changes (e.g. alignment to a sharp geometry feature) to

propagate when needed. The result of the coarse-to-ine pass is the

updated ield and a set of points whose ield values have changed sig-

niicantly. We use this information to extract a part of the mesh from

the changed region and merge it with the inal mesh (Section 4.4).

The pipeline concludes the mesh update by calculating detail maps

for colors and displacement for the new region (Section 4.5). Overall,

we designed all update steps so that they produce results that are

similar to those obtained by discarding the previous reconstruction

and re-calculating everything from scratch (Figure 4).

4.1 Approximate k-nn

Eicient computation of the neighborhood of a point is essential

for optimization of both ields, so we require a data structure that

supports eicient neighbor queries, as well as frequent updates.

Most data structures that store point data either do not support

these queries (e.g. point lists), are hard to update (e.g. balanced

k-D trees), or exhibit bad data locality (e.g. hash grids), making

them unsuitable for our purposes. In particular, we experimented

with spatial hashing techniques, which allow for constant-time

updates, but found that lack of data locality, exacerbated by the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

Field-Aligned Online Surface Reconstruction • 77:5

1. Modify Points 2. Update Hierarchy 3. Re-Optimize 5. Calculate Detail Maps

4. Extract Base Mesh

Fig. 3. Pipeline Overview

(a) Successive addition of scans (b) Full Opimization

Fig. 4. Comparison of the final results obtained from successive addition
of scans and a complete optimization of the entire point cloud. Although
the base mesh’s face layout exhibits minor diferences, the geometries are
indistinguishable.

need to perform multiple separate hash accesses for each query,

downgraded performance and ultimately hindered the interactivity

required for online reconstruction.

A key observation of our work is that the smoothing step in ield

optimization does not require the exact k-nn, allowing us to gain

eiciency by using an approximate nearest neighbor representation.

We use a structure based on a combination of multiple Morton

codes [Morton 1966], similar to [Li et al. 2012]. The Morton code of

an n-dimensional integer vector is an easily computable integer that

represents the position of the vector on the n-D z-order curve. Since

nearby points tend to have nearby Morton code indices, sorting a set

of points by their indices allows us to deine an approximate notion

of adjacency in terms of proximity within the sorted list. This is

not perfect, however, as some nearby points may be far apart in the

list. Since adding an ofset s to each point’s coordinate, re-encoding,

and re-sorting generally leads to a diferent set of neighbors, we

combine the information of multiple shifted z-curves to deine an

improved neighborhood relation that is fast to compute and suitable

for online updates.

Shifted Grids. Four shifted grids and their corresponding z-order

curves ś each translated by an ofset s ∈ Z3 (an integer multiple

of the cell size) compared to the previous one ś form the basis of

our neighborhood data structure. The grids are represented as lists

of points that are sorted by the corresponding cells’ Morton codes

(we use a notation that supports negative coordinates by including

the inverted sign bit in the code). This representation provides fast

queries and eicient updates. We add every point to all four grids,

where the location in the list is determined by the diference of the

Morton code of the point’s quantized position and the respective

grid’s ofset. We calculate the grid size д used for quantization in a

way such that the average number of points in a cell is close to a

target cell cardinality θc (15 in our implementation) when the irst

point setV is added. We start with an initial guess from the heuristic

д = 3 ·max
(

diag(V)
)

3

√

θc

N (V)
, (1)

where diag(V) is the diagonal of the axis-aligned bounding box ofV ,

max(·) represents the maximum coeicient of a vector, and N (V) is

the number of points in V . We then reine this value by calculating

the actual average cell cardinality c for the grid size д and update

the initial guess д∗ according to:

д∗ = д ·
3

√

θc

c
(2)

In our implementation, we use s = (5, 5, 5)T cells because we

found that this produces higher k-nn accuracy among a variety

of data sets. We experimented with more shifted grids but found

diminishing returns beyond four.

Implementation Notes. We store the original point data only once

to conserve memory. New points are appended to the back of this

contiguous vector and deletions create gaps that can be illed by

other points later on. Adjacency information is deined indirectly

using sorted lists that refer to points via their indices. Speciically,

for every shifted grid, we store the permutation of the base list

that generates the grid, where every entry is represented by the

Morton code in the grid and an index into the original list. The

rule for deletions ensures that point indices are preserved, which is

important to avoid costly updates that touch the entire dataset.

Insertion. Adding a new set of points into this data entails sorting

the new points according to their Morton codes and merging the

result with the existing sorted list of points, which can be done very

eiciently; this process must be repeated four times for each of the

shifted grids. To further improve cache coherency, we also sort the

point data that is appended to the base list by their Morton codes.

Query. To approximate the k-nearest neighbors of a given point,

we locate the point in all the shifted grids using binary search over

the permutation vectors. Note that since the irst few elements

accessed by the binary searches for close-by points are usually the

same, they will stay in cache, leading to very fast lookups. After

the point is located on a shifted grid, the m points immediately

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

77:6 • Schertler, N. et al.

Fig. 5. A point cloud and a reference point (yellow) for which we seek
neighbors. Two shited grids (black and blue) with the relevant part of their
z-order curve are superimposed. The two immediate neighbors on the curve
are considered as adjacency candidates. The right figure shows the retrieved
neighbor candidates (with color indicating the source z-curve).

preceding and following the point in the grid are considered as

neighbor candidates if they do not exceed an upper distance limit.

We set this upper limit, which is

needed to ilter out outliers, to the

target edge length of the reconstruc-

tion. From the resulting set of can-

didates, we calculate the k nearest

neighbors to ind the inal neighbor

set (Figure 5). For our implementa-

tion, we used k = 8 andm = 2, result-

ing in a maximum candidate set size

of 2 · 2 · 4 = 16.

4.2 Multi-Resolution Hierarchy

The hierarchy’s main purpose is to provide an initial guess for the

iner levels during ield optimization, where each level is optimized

successively. Using a hierarchy allows us to limit the number of

ield optimization iterations per level to a small value (we use six).

Figure 6 shows the importance of the hierarchy for a procedural

data set. Hierarchy-less optimization is not able to produce a regular

mesh even for these perfect data. While the meshing results near

the features are adequate, the small number of iterations are not

suicient to propagate the information from the guiding edges to the

face centers. Using the hierarchy avoids this problem because these

guides can be eiciently propagated over long distances at coarser

levels. Every node in the hierarchy stores geometry information

(position and normal) and ield values (directional and positional).

Furthermore, nodes on the inest level also store color information.

To support neighbor queries for ield optimization, every level of

the hierarchy contains an instance of our neighbor data structure

with original points and shifted grids. Since we are using Morton

codes for the neighbor data structures on each level, an octree is

a natural choice for the hierarchy because the coordinates of a

cell’s parent can be calculated eiciently with bitshift operations

on the cell’s Morton code. This allows us to keep the hierarchical

relationships entirely implicit, which saves memory and improves

memory coherency because access patterns are less random than

with nodes linked by pointers. Except for the inest level, every cell

at coarser levels stores the average of the data of its children. In

(a) Optimization without hierarchy (b) Optimization using the hierarchy

Fig. 6. Comparison of the extraction results for fields that are optimized
without a hierarchy (let) and with the hierarchy (right). Both optimizations
use six iterations per level. Colors have been generated procedurally on the
input point cloud.

total, our hierarchy requires about 130
bytes
point , whereas the original

IM hierarchy (which stores neither colors nor references to mesh

vertices) uses about 425
bytes
point .

All the operations for maintaining and updating the hierarchy

explained above, including updates of the neighbor data structure,

are very eicient, and we experimentally observed that the time

spent on these operations is usually only about 1% of the total time

of our pipeline (for details, refer to Figure 13).

4.3 Point Data Update and Field Re-Optimization

As points are added and removed from the input, we modify the

representation at the inest level of the hierarchy and adjust the

coarser resolutions by updating the average positions of points

in the parent nodes. Storing the average at node n as the sum of

positions and the sample count, (Σn ,κn), the average of a parent

node can be eiciently updated by adding the positions (and counts)

of points inserted into the child and subtracting those removed.

Speciically, if we denote by p (n) the parent of node n, we get:
(

Σp (n) ,κp (n)
)

←
(

Σp (n) + Σ+n − Σ−n ,κp (n) + κ
+

n − κ
−
n

)

(3)
(

Σ+
p (n)
,κ+

p (n)

)

←

(

Σ+
p (n)
+ Σ+n ,κ

+

p (n)
+ κ+n

)

(4)
(

Σ−
p (n)
,κ−

p (n)

)

←

(

Σ−
p (n)
+ Σ−n ,κ

−
p (n)
+ κ−n

)

(5)

where (Σ+n ,κ
+

n) (resp. (Σ
−
n ,κ
−
n)) is the sum and count of points added

to (resp. removed from) node n.

As we update the averages in a ine-to-coarse manner, we add

the visited nodes to a queue of nodes for which the directional and

positional ields need to be updated. We then perform a subsequent

coarse-to-ine pass to update the ield values of queued nodes. Un-

fortunately, we cannot exclusively update the nodes visited when

updating the averages as the prolongation of coarse solutions into

iner children may require a modiication of the ields in nearby

regions as well. Failing to do so may result in suboptimal ields

because the old ield values pose a hard boundary constraint. We

also cannot update all iner children, since this would require all

nodes to be updated.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

Field-Aligned Online Surface Reconstruction • 77:7

Fig. 7. Visualization of the re-optimized region (right part, shaded yellow)
when adding a new scan (top let) to the current reconstruction (botom
let). The back of the guinea pig’s let side is re-optimized to accommodate
the new data while the let foreleg stays unafected.

Instead, we track the extent to which the ields change as a result

of the update step. More speciically, given the old and new ield

values oold , onew , pold , and pnew , we calculate the changes as:

∆o =

oold − onew

∆p =
1

ℓ

pold − pnew

 ,

(6)

where ℓ is the target edge length. If one of these changes is above a

prescribed threshold, we add all of the nodes’ children to the queue

for processing the next iner level. We achieve good results with

the thresholds 0.1 for both ields on the inest level. The thresh-

olds are doubled successively at each coarser level to account for

the coarser resolution . In practice, this approach usually leads to

re-optimization of only the area surrounding the modiied points.

However, in cases where there are no features in the input that

guide the alignment ield, new data may cause re-optimization of

large parts of the model. Figure 7 shows the updated regions for an

example data set.

4.4 Coarse Mesh Update

The locally-updated ields contain all the information required to

extract the coarse mesh. As in previous steps, we want to process

only the newly modiied data to avoid costly passes over the entire

point cloud. To extract the mesh locally, we propose a mesh merging

procedure guided by the position ield values Ð the key idea is to

exploit the fact that in the untouched regions, the position ield

averages used by the IM extraction will lead to identical coordinates

for the inal mesh vertices. We thus identify the modiied regions,

grow them to capture a small strip of untouched elements, mesh the

extended region, and zip the meshes together exploiting the vertex

correspondences in the overlapping strip (Figure 8).

Active Region. Expansion is performed in two steps. First, we

identify points on the boundary of the changed set. Then, we ind the

points that are outside of the changed set but within a ixed radius

of this boundary. Using the nearest-neighbor graph (previously

Modified Point Set

Expanded Point Set

Fig. 8. Coarse mesh update. The set of modified points is grown to yield
an expanded point set, from which a partial mesh is extracted. This partial
overlay mesh is then integrated into the old mesh, replacing overlapping
areas.

computed for updating the ield values), we deine the boundary

of the changed set by identifying those points that are not in the

changed set but which are neighbors of points that are.

In expanding the boundary, our goal is to ind all points outside

of the changed set whose associated mesh vertices can share a face

with the mesh vertices associated to points inside the change set. We

do this using the target edge length of IM as a heuristic. Speciically,

assuming that all edges have a length equal to the target edge length,

the distance between two points that deine vertices sharing a quad

is at most twice the target diagonal length (one diagonal inside the

quad and another diagonal to account for the correspondences as the

distance between a point and its positional ield value is by deinition

at most half the target diagonal length). Since the optimization and

clustering can cause slight deviations from this rigid scheme, we

add a small margin and use the inal heuristic r = 3 · ℓ, where ℓ

is the target edge length. A similar argument shows that r = 3 · ℓ

suices for triangle faces as well. Thus, by growing the modiied

set by a radius of 3 · ℓ, we identify all points whose associated mesh

vertices are within a one-ring neighborhood of the mesh vertices

associated with boundary points (and possibly more). We refer to

the set of added points as the expanded points.

Extraction. An overlay mesh is then extracted using the IM graph-

based collapsing approach from the active region. We construct a

local graph covering the active region, where every point generates

a vertex at the location of its positional ield value and edges are

added according to the original point cloud’s adjacency graph Ð

since this graph will in general not be symmetric, we symmetrize it

by adding the missing edges that are needed by the mesh extraction

of IM. By construction, this graph forms clusters, which are then

collapsed into a single node using length-based edge collapse. For

every node in the collapsed graph, a mesh vertex is generated and

faces are determined using a greedy search over the adjacency graph.

Our pipeline supports triangles and quadrilaterals. We tessellate

faces of higher degree as well as non-planar quads.

Stitching. The irst stitching step deletes all vertices of the old

mesh that have been previously created by points in the changed

set. This generates a punctured mesh with a hole in the area of the

changed set. In our representation, every point stores a reference to

its associated mesh vertex. Thus, deleting mesh geometry during

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

77:8 • Schertler, N. et al.

(a) Coarse base mesh (b) Tessellated mesh (c) Tessellated mesh
without color

Fig. 9. High-frequency details are added to the coarse base mesh by the
color and displacement maps.

the update is a matter of iterating over points in the changed set

and removing the associated mesh vertices (and incident edges and

faces). Since, by construction, vertices generated solely from the

expanded points are duplicated in the punctured mesh, it is possible

to glue the overlay mesh to it by merging the duplicate vertices.

Special care must be taken of vertices that are formed by points

close to the boundary of the active region. The original clusters

for those vertices may include points that are outside of the active

region and averaging the positional ield values of a partial cluster

results in a diferent vertex position in general, preventing duplicate

detection. To avoid this, we identify vertices formed from partial

clusters with a breadth-irst search on the overlay mesh starting

from the vertices generated by the (unexpanded) changed set. The

BFS proceeds until it reaches a duplicate vertex with respect to

the punctured mesh and excludes every vertex beyond this point.

The resulting front of duplicate vertices is suicient to stitch the

punctured mesh with the overlay mesh and we delete every vertex

that has not been reached by the BFS as these vertices may be formed

by partial clusters.

4.5 Detail Map Calculation

The inal step of our reconstruction pipeline adds details in the

form of a color and displacement map to the coarse mesh (Figure

9). The displacement map is a scalar height ield over the mesh

that displaces the surface in the direction of the interpolated vertex

normals. We use linear and bilinear interpolation for triangles and

quads, respectively. The vertex normals are calculated as the area-

weighted average of incident face normals on the coarse mesh. As in

previous steps, detail map calculation is only performed in regions

of the mesh that have changed, i.e. on new faces that are generated

during the creation of the coarse mesh.

Local Parametrization. Since a global UV

parametrization is not necessary for our purposes,

we opt for a local, per-face parametrization that

allows us to store these data together with the

geometry, similar to Mesh Colors [Yuksel et al.

2010]. We use the texel layout that is used by the

GPU tessellation unit (see inset igure) to allow

eicient rendering of the high-resolution mesh,

similar to [Schäfer et al. 2013]. Using this representation, every

 λ = 0.25 λ = 0.90

Fig. 10. Influence of the smoothness parameter λ on the extracted surface

face, edge, and vertex deines a set of texels storing the color and

ofset information, where texels of edges and vertices are shared by

multiple faces.

Filtering. The texel values are deined so that the resulting tes-

sellated mesh is at once faithful to the input points and robust to

scanner noise. We achieve this by solving a linear least-squares

system combining interpolation and regularization terms:

argmin
t⃗

(

(1 − λ) · I (⃗t) + λ · R (⃗t)
)

(7)

Here, t⃗ is the vector containing texel data, I (⃗t) is the data idelity

term, and R (⃗t) measures the smoothness. The weight parameter

λ ∈ [0, 1] is used to balance between the two terms. Figure 10

compares the reconstructed surface for two choices of λ. While

small values reconstruct the input points more closely, larger values

can reduce noise signiicantly. We perform all color calculations in

CIE La*b* space in order to measure smoothness and color similarity

in a way that aligns with human perception.

Regularization Term. We use the bi-Laplacian to deine the regu-

larizer, setting:

R (⃗t) :=

L⃗t

2
(8)

where L is the uniform Laplacian matrix for the tessellated mesh

where every texel corresponds to one vertex. Note that as we are

only regularizing for the smoothness of the normal ofset, not the 3D

displacement: this formulationwill preserve creases in the input data

as soon as the ield optimization step aligns the edges of the coarse

mesh to them (Figure 6). This formulation can result in a visible grid

pattern on the reconstructed surface that reveals the underlying

coarse mesh, especially for large smoothness values λ. To remedy

this, we replace rows of the linear system for the displacement map

that correspond to texels on non-crease edges (which we determine

by a user-speciied threshold on the dihedral angle) with a geometric

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

Field-Aligned Online Surface Reconstruction • 77:9

Laplacian, i.e. for the current texel i and its neighbors N (i):

(pi + ni · ti) −
1

|N (i) |

∑

j ∈N (i)

(pj + nj · tj) = 0, (9)

where pi , ni , and ti are the interpolated position, normal and the

displacement of texel i , respectively.

Projection. To measure data idelity, we project every point in the

changed set onto the coarse mesh in the direction of the interpolated

vertex normal, as proposed in [Kobbelt et al. 1999]. We do this

eiciently, by only projecting a point onto the faces of the coarse

mesh that are incident to the associated vertex.

We then ind the projection of a point p by solving for the face fp
and bilinear coordinates (resp. barycentric coordinates for triangles),

αp , such that the vertex projects on the face at the interpolated point

using the interpolated normal:
(

p − πf (α)
)

× nf (α) = 0, (10)

where πf (α) is the linearly (resp. bilinearly) interpolated position

within the triangle (resp. quad) f at coordinates α and nf (α) is

the interpolated normal. For each face, we solve the non-linear

equation using Newton iterations, discarding modiied points from

the interpolation constraints when they do not project inside any

incident face. If there are multiple projections, we use the one that

results in the smallest ofset, measured as
〈

p − πf (α),nf (α)
〉

∥nf ∥
2

. (11)

Data Term. Using the projection, we deine the interpolation

penalty in terms of the deviation of the point’s attribute (color and

ofset) from the attribute obtained by sampling the texture map at

the projected position:

I (⃗t) =
∑

p∈P

(

t⃗ (fp ,αp) − ap
)2
, (12)

where P is the set of modiied points, t⃗ (f ,α) is the evaluation of

the texture map at face f and coordinates α , and ap is the attribute

associated to point p.

We solve the sparse linear system in Equation (7) using Conjugate

Gradients, locking the texel values of unmodiied faces to deine

Dirichlet boundary constraints, and using as initial guess the point’s

attribute that is closest to a texel. In our experiments, the solver

converges quickly, usually in less than 30 iterations. The inal texel

values are then uploaded to the GPU together with the coarse mesh

and are rendered using the GPU’s tessellation unit.

5 RESULTS

We use an HP 3D Structured Light Scanner Pro S3 and an automatic

turntable to acquire range scans as input for our pipeline. To provide

a coarse registration without further user interaction, we attached

an HTC Vive controller to the scanner rig whose orientation and

position in a reference coordinate system can be tracked accurately

(Figure 11). We use a workstation with a 6-core i7 processor clocked

at 3.5 GHz to run all our experiments.

We use a semi-automatic calibration process to determine all rel-

evant parameters of this system, which allows us to place acquired

Vive Controller Projector

Cameras

Fig. 11. Hardware setup

Points Coarse Faces Fine Vertices

Eagle 796,825 21,296 1,955,789

King 1,876,034 17,440 1,549,559

Guinea Pig 2,532,694 5,019 472,602

Head (quads) 3,165,119 16,058 1,540,950

Head (tris) 3,165,119 33,539 2,526,406

Broccoli 3,433,542 9,406 832,670

Monk 5,661,497 9,441 907,846

Soldier 6,690,187 8,887 793,119

Table 1. Reconstruction input and output statistics

3D scans in the Vive’s reference coordinate system. The details of

this calibration can be found in the supplementary material. Since

small errors in the tracked controller orientation can lead to rela-

tively large ofsets in the scanned area (especially for small models),

we provide an optional two-click coarse registration tool that lets

the user specify one correspondence from which a correcting trans-

lation is calculated. The coarse registration obtained in this way

(with or without user corrections) provides a good initial guess for a

subsequent ine registration, for which we use Sparse ICP [Bouaziz

et al. 2013] with the point-to-plane formulation. Table 1 shows sta-

tistics for all presented data sets, including the numbers of input

points, extracted base mesh faces, and vertices in the tessellated

mesh. (Our implementation and selected data sets are available at

https://github.com/NSchertler/OnlineSurfaceReconstruction.)

Visual Aids. Our system highlights the boundaries of the recon-

structed model after each scan is integrated (Figure 12, left), suggest-

ing where data is required and helping to plan the next scan. While

more advanced next-best-view optimizations could be integrated

[Fan et al. 2016; Wu et al. 2014], we found the guidance provided by

our direct visual feedback to be suicient for all our experiments.

We eiciently scanned models with complex shapes, combining an

initial set of automatic scans (taken using a rotational stage), with a

few manual scans of the occluded regions (Figure 12, right).

Normal Filtering. The point normals that are used for ield opti-

mization play an important role in the inal result. Directly using

the normals of the point clouds leads to noisy directional and posi-

tional ields in regions with high-frequency details, which breaks

the extraction process in some places (Figure 14a.) We address this

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

https://github.com/NSchertler/OnlineSurfaceReconstruction

77:10 • Schertler, N. et al.

(a) Partial result with highlighted boundary (b) Final result

Fig. 12. Boundaries of the extraction result are highlighted with a flashing
border during the scan session in order to help locate the next scan.

Fig. 13. Average relative time for each step of our pipeline

(a) Unmodified Normals (b) Cleaned with a Gaussian filter

Fig. 14. Comparison of the extraction result using normals calculated as
the average of incident faces in the range scan (let) and ater a cleaning
pass using Gaussian filtering (right).

problem applying a smoothing ilter with Gaussian weights to the

normals after integrating a scan into the hierarchy, using our approx-

imate neighbor deinition. We couple the variance of the Gaussian

to the target edge length ℓ, setting σ = 0.1ℓ. This smoothing pro-

duces much cleaner ields which results in a more regular mesh

(cf. Figure 14b).

Direct Point Cloud Editing. The ability to update the reconstructed

surface at interactive rates enables a user to correct problems in the

(a) Noisy Region

(b) Smoothing Brush

(c) Missing Data

(d) Fill-Holes Brush

(e) Superflous Points

(f) Delete-Points Brush

Fig. 15. Usage of interactive point cloud editing tools to resolve several
problems in the scans

scans (e.g. outliers or holes), with immediate visual feedback of the

inal reconstruction.

We implemented three diferent ield-aligned brushes to showcase

this feature (Figure 15).

The smoothing brush takes advantage of the hierarchy’s eicient

neighbor queries and applies a Gaussian ilter to the point positions

(Figure 15, b). Optionally, anisotropic smoothing can be applied,

picking one of the directions of the directional ield and specifying

the ilter strength in each of the three local dimensions, i.e. chosen

direction, perpendicular tangential direction, and normal (see sup-

plementary material for more details). For example, the region in

Figure 15 was smoothed only along the normal direction.

The ill-holes brush reconstructs missing data in the scans. For

example, we used it in our experiments to complete the eye of the

guinea pig model, where the scanner failed to capture samples due

to high specularity (Figure 15, d). The brush works in four stages:

(1) the user marks a support region in the point cloud, where the

reconstructed surface serves as a proxy for the 3D selection tool;

(2) we it a plane to this region using PCA and project the points of

the support region onto this plane; (3) this produces a sampling of a

height ield h : R2 → R over the plane, which we reconstruct using

a thin plate spline; (4) the user can interactively sample points from

this height ield to ill the hole, until satisied with the result.

Finally, the remove-points brush deletes undesired points in a

spherical region around the 3D cursor (Figure 15, f).

Data Source. Our pipeline is not speciic

to our hardware setup, and can be used

to process any range scan or point cloud.

The inset shows a dataset acquired with a

laser scanner and registered externally. The

colors are procedural and depend on the

vertex coordinates.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

Field-Aligned Online Surface Reconstruction • 77:11

Fig. 16. Ratio of the total running times of IM and our pipeline for successive
addition of new scans (Gargoyle dataset).

Fig. 17. Comparison of the extraction results of our method (let) and
Screened Poisson Reconstruction (right) [data courtesy of LGG, EPFL,
http://lgg.epl.ch/statues.php].

Comparison with IM. The original IM pipeline does not support

updates of its underlying data structures. Therefore, if this pipeline

were to be used, every new scan would initiate an entire rebuild of

the hierarchy and extracted mesh. Our pipeline updates only as

much data as required. As a result, as more scans are added, the total

runtime of the IM pipeline increases approximately quadratically.

Figure 16 visualizes the ratio of runtimes of the IM pipeline and our

solution. The increasing trend clearly shows that the IM pipeline

becomes less eicient as more scans are added.

Comparison with Screened Poisson Reconstruction. In Figure 17, we

compare our method with Screened Poisson Reconstruction (SPR)

on the dataset used for Figure 8 of [Kazhdan and Hoppe 2013]. We

used the reference implementation provided by the authors, and

manually adjusted the resolution and smoothing parameter of both

methods to produce a mesh with similar density and surface details.

SPR took 39.5 seconds and required 910.4 MB to reconstruct the

800k points data set at the given resolution on a six-core Intel Core

i7 machine, using all cores. Our pipeline outperforms SPR both in

terms of running time, requiring 12.4 seconds, and peak memory

usage (639.8 MB). Visually, the results are very similar with the main

diference being that SPR ills holes where no data is present, while

our method does not, introducing boundaries in the reconstructed

mesh. The meshing pattern of our result is highly isotropic and

semi-regular, and it is not plagued by the irregularity and sliver

elements of the Marching Cubes step used by SPR.

Figure 18 provides a more quantitative comparison with SPR us-

ing the benchmark of Berger et al. [2013]. The results were obtained

by reconstructing surfaces from 240 virtual scans of 5 models (An-

chor, Dancing Children, Daratech, Gargoyle, and Lord Quasimodo).

The igure shows the ratio of running times (left), positional accu-

racy (center), and normal accuracy (right) of our method relative

to SPR, and conirms that our method produces reconstructions

more eiciently without sacriicing geometric quality. (We ran SPR

at depth 9 to produce surfaces with resolution comparable to ours.

We measured positional and normal accuracy using reconstruction-

to-ground-truth errors in order to avoid bias due to reconstruction

holes in regions that were not visible to the virtual scanners.)

Comparison with Kinect Fusion. In order to compare our pipeline

with the online reconstruction of [Newcombe et al. 2011], we per-

formed a scanning session with the Kinect Fusion implementation

provided in the Microsoft Kinect SDK, capturing 800 frames at 30

fps, and reconstructed the triangle mesh from the acquired volumet-

ric representation. We used every tenth captured depth map, which

the Kinect Fusion system already smoothed with a bilateral ilter, as

input for our pipeline. We ran ine registration and extraction with

a target edge length that approximately matches those in the Fusion

reconstruction and a smoothness of λ = 0.98. Both results are shown

in Figure 19. Kinect Fusion results are smoothed out, resulting in

loss of detail and shrinkage. This aggressive smoothing is required

to avoid artefacts caused by noisy input data and registration errors

from the utilized SLAM (e.g. table surface). In addition, during the

scanning section, Kinect Fusion results are only available as ray-

traced distance ields, whereas our system ofers a łinalž on-the-ly

feedback consisting of a quad-dominant, semiregular, ield-aligned,

displacement-mapped, explicit mesh representation.

Large Dataset. The approximately linear cost of our reconstruc-

tion pipeline makes it ideal for large datasets. We show the recon-

struction result for the Bremen data set [Borrmann and Nüchter

2016] in Figure 20. The dataset is comprised of 99 registered scans

acquired by a laser scanner, for a total of about 80 million points. The

approximate linear cost is clearly visible in Figure 21, where we plot

the cumulative time as more and more range scans are integrated

in the reconstruction.

6 LIMITATIONS AND CONCLUDING REMARKS

We presented the irst online algorithm to convert range scans and

point clouds to semi-regular, coarse, feature-aligned meshes. Our

results are equipped with a local parametrization, which is used for

generating color and displacement maps.

Similar to the original IM algorithm, our method is not guaranteed

to produce manifold output, (though we have found non-manifold

output to be rare in our experiments). Heavy undersampling can

produce undesired holes approximately of the size of the target edge

length: while this can be addressed by taking another scan or using

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

http://lgg.epfl.ch/statues.php

77:12 • Schertler, N. et al.

 1/8

 1/4

 1/2

1

2

4

20000 40000 80000 160000 320000

Time

 1/8

 1/4

 1/2

1

2

4

20000 40000 80000 160000 320000

Distance

 1/8

 1/4

 1/2

1

2

4

20000 40000 80000 160000 320000

Angle

Fig. 18. Ratios of the running time (let), positional accuracy (center), and normal accuracy (right) of our method relative to SPR, obtained across 240 virtual
scans, given as a function of the number of points in the scan.

Fig. 19. Comparison of the extraction results of our method (let) and Kinect
Fusion (right), computed from noisy range scanned data captured from a
Kinect device. Results of Kinect Fusion are smoothed out, resulting in loss of
detail (first close-up) and shrinkage (second close-up, where the silhouete
of our result is superimposed as a doted blue line, to highlight diferences).
Black regions in the Kinect Fusions results correspond to areas which were
not visible to the scanner and for which color data is not available.

Fig. 20. Reconstruction of the large Bremen data set.

Fig. 21. Performance recording for integrating each of the 99 scans of the
Bremen data set on an Intel Core i7 machine.

our hole-illing brush, it would be interesting to combine our ap-

proach with the indicator function of a local Poisson reconstruction

to automatically insert additional points and solve these problems.

Moderate levels of zero-mean noise with a standard deviation

that is smaller than the target edge length can be handled well

through our detail map generation. More severe noise can cause

the base mesh generation to break, but basic iltering techniques

can help signiicantly to overcome this problem as we have shown

in Figure 14 and Figure 19. Registration errors can lead to noisy

surfaces since their errors have non-zero mean. Outliers usually

do not pose a challenge for our pipeline because these are already

iltered out during base mesh generation ś a feature that we adopted

from the underlying IM framework.

Our results are made possible by leveraging the recent advance-

ments in ield-aligned parametrization and extending them, for the

irst time, to an online setting. We believe that this algorithm is

useful in contexts other than range scanning, such as reconstruction

of time varying datasets or interactive modeling sessions, where

the data is represented as an implicit surface or a CSG tree. We plan

to explore this direction in future work.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

Field-Aligned Online Surface Reconstruction • 77:13

REFERENCES
N. Amenta, S. Choi, and R. Kolluri. 2001. Power Crust. In ACM Symposium on Solid

Modeling and Applications. 249ś260.
C. Bajaj, F. Bernardini, and G. Xu. 1995. Automatic Reconstruction of Surfaces and

Scalar Fields from 3D Scans. In Proceedings of the Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH 1995). 109ś18.

Matthew Berger, Joshua A. Levine, Luis Gustavo Nonato, Gabriel Taubin, and Claudio T.
Silva. 2013. A Benchmark for Surface Reconstruction. ACM Transactions on Graphics
32, 2 (2013), 20:1ś20:17.

Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Joshua A. Levine,
Andrei Sharf, and Claudio T. Silva. 2014. State of the Art in Surface Reconstruction
from Point Clouds. In Eurographics 2014 - State of the Art Reports, Sylvain Lefebvre
and Michela Spagnuolo (Eds.). The Eurographics Association. DOI:https://doi.org/
10.2312/egst.20141040

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. 1999. The Ball-
Pivoting Algorithm for Surface Reconstruction. IEEE Transactions on Visualization
and Computer Graphics 5 (1999), 349ś359.

J.D. Boissonnat and S. Oudot. 2005. Provably good sampling and meshing of surfaces.
Graphical Models 67 (2005), 405ś451.

D. Bommes, B. LÃľvy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. 2012.
State of the Art in Quad Meshing. In Eurographics STARS.

Dorit Borrmann and Andreas Nüchter. 2016. Robotic 3D Scan Repository.
http://kos.informatik.uni-osnabrueck.de/3Dscans. (2016). http://kos.informatik.
uni-osnabrueck.de/3Dscans

Soien Bouaziz, Andrea Tagliasacchi, and Mark Pauly. 2013. Sparse iterative closest
point. In Computer graphics forum, Vol. 32. Wiley Online Library, 113ś123.

F. Calakli and G. Taubin. 2011. SSD: Smooth Signed Distance Surface Reconstruction.
Computer Graphics Forum 30 (2011), 1993ś2002.

J. Carr, R. Beatson, H. Cherrie, T. Mitchell, W. Fright, B. McCallum, and T. Evans.
2001. Reconstruction and representation of 3D objects with radial basis functions.
In Proceedings of the Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 2001). 67ś76.

P Cignoni, G Ranzuglia, M Callieri, M Corsini, F Ganovelli, N Pietroni, and M Tarini.
2011. MeshLab. http://www.meshlab.org/. (2011).

B. Curless and M. Levoy. 1996. A Volumetric Method for Building Complex Models
from Range Images. In Proceedings of the Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 1996). 303ś312.

T. Dey and S. Goswami. 2003. Tight Cocone: A Water-tight Surface Reconstructor. In
Proceedings of the Symposium on Solid Modeling and Applications. 127ś134.

G. Dziuk. 1988. Finite elements for the Beltrami operator on arbitrary surfaces. In
Partial Diferential Equations and Calculus of Variations, Lecture Notes in Mathematics.
Vol. 1357. 142ś155.

H. Edelsbrunner and E. Mücke. 1994. Three-dimensional Alpha Shapes. ACM Transac-
tions on Graphics 13 (1994), 43ś72.

S. Fuhrmann and M. Goesele. 2014. Floating Scale Surface Reconstruction. ACM
Transactions on Graphics 33 (2014), 46:1ś46:11.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. 1992. Surface Recon-
struction from unorganized points. In Proceedings of the Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH 1992). 71ś78.

A. Hornung and L. Kobbelt. 2006. Robust reconstruction of watertight 3D models from
non-uniformly sampled point clouds without normal information. In Symposium on
Geometry Processing. 41ś50.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and others. 2011. KinectFusion: real-time 3D reconstruction and interaction using a
moving depth camera. In Proceedings of the 24th annual ACM symposium on User
interface software and technology. ACM, 559ś568.

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-Outside
Segmentation using Generalized Winding Numbers. ACM Transactions on Graphics
(proceedings of ACM SIGGRAPH) 32, 4 (2013), 33:1ś33:12.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
Field-Aligned Meshes. ACM Transactions on Graphics (Proceedings of SIGGRAPH
ASIA) 34, 6 (Nov. 2015). DOI:https://doi.org/10.1145/2816795.2818078

Michael Kazhdan. 2005. Reconstruction of Solid Models from Oriented Point Sets. In
Proc. of the 3rd Eurographics Symp. on Geometry Processing (SGP ’05). Article 73.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Recon-
struction. (2006), 61ś70. http://dl.acm.org/citation.cfm?id=1281957.1281965

M. Kazhdan and H. Hoppe. 2013. Screened Poisson surface reconstruction. ACM
Transactions on Graphics 32 (2013), 29:1ś29:13.

M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe. 2007. Unconstrained Isosurface Extraction
on Arbitrary Octrees. In Symposium on Geometry Processing. 125ś133.

Leif Kobbelt, Jens Vorsatz, and Hans-Peter Seidel. 1999. Multiresolution Hierarchies
on Unstructured Triangle Meshes. Comput. Geom. Theory Appl. 14, 1-3 (Nov. 1999),
5ś24. DOI:https://doi.org/10.1016/S0925-7721(99)00032-2

R. Kolluri, J. Shewchuk, and J. O’Brien. 2004. Spectral Surface Reconstruction From
Noise Point Clouds. In Symposium on Geometry Processing. 11ś21.

P. Labatut, J.-P. Pons, and R. Keriven. 2009. Robust and eicient surface reconstruction
from range data. Computer Graphics Forum 28 (2009), 2275ś2290.

Shengren Li, Lance Simons, Jagadeesh Bhaskar Pakaravoor, Fatemeh Abbasinejad,
John D Owens, and Nina Amenta. 2012. kANN on the GPU with shifted sorting. In
Proc. of the 4th ACM SIGGRAPH/Eurographics conf. on High-Performance Graphics.
Eurographics Association, 39ś47.

W. Lorensen and H. Cline. 1987. Marching Cubes: A High Resolution 3D Surface
Reconstruction Algorithm. In Computer Graphics (Proceedings of SIGGRAPH 87).
163ś169.

J. Manson, G. Petrova, and S. Schaefer. 2008. Streaming surface reconstruction using
wavelets. In Symposium on Geometry Processing. 1411ś1420.

Microsoft. 2010. Kinect. https://developer.microsoft.com/en-us/windows/kinect. (2010).
Guy M Morton. 1966. A computer oriented geodetic data base and a new technique in ile

sequencing. International Business Machines Company New York.
P. Mullen, F. De Goes, M. Desbrun, D. Cohen-Steiner, and P. Alliez. 2010. Signing the

Unsigned: Robust Surface Reconstruction from Raw Pointsets. Computer Graphics
Forum 29 (2010), 1733ś1741.

Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. 2011. KinectFusion: Real-Time Dense Surface Mapping and Tracking. In
Proceedings of IEEE ISMAR - 10th International Symposium on Mixed and Augmented
Reality. IEEE, 127ś136.

Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. Seidel. 2003. Multi-level partition of
unity implicits. ACM Transactions on Graphics 22 (2003), 463ś470.

Nico Pietroni, Marco Tarini, Olga Sorkine, and Denis Zorin. 2011. Global parametriza-
tion of range image sets. In ACM Transactions on Graphics (TOG), Vol. 30. ACM,
149.

U. Pinkall and K. Polthier. 1993. Computing Discrete Minimal Surfaces and Their
Conjugates. Experimental Mathematics 2 (1993), 15ś36.

J. Podolak and S. Rusinkiewicz. 2005. Atomic volumes for mesh completion. In Sympo-
sium on Geometry Processing. 33ś41.

Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. 2002. Real-time 3D Model
Acquisition. ACM Trans. Graph. 21 (2002), 438ś446.

Szymon Rusinkiewicz andMarc Levoy. 2000. QSplat: AMultiresolution Point Rendering
System for Large Meshes. In Proceedings of ACM SIGGRAPH 2000. 343ś352.

Henry Schäfer, Magdalena Prus, Quirin Meyer, Jochen Süßmuth, and Marc Stamminger.
2013. Multiresolution Attributes for Hardware Tessellated Objects. IEEE transactions
on visualization and computer graphics 19, 9 (2013), 1488ś1498.

Gabriel Taubin. 1995. A Signal Processing Approach to Fair Surface Design. In
Proceedings of the 22Nd Annual Conference on Computer Graphics and Interac-
tive Techniques (SIGGRAPH ’95). ACM, New York, NY, USA, 351ś358. DOI:https:
//doi.org/10.1145/218380.218473

Xinyi Fan, Linguang Zhang, Benedict Brown, and Szymon Rusinkiewicz. 2016. Auto-
mated View and Path Planning for Scalable Multi-Object 3D Scanning. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 35, 6 (nov 2016).

Jonathan Palacios and Eugene Zhang. 2007. Rotational Symmetry Field Design on
Surfaces. ACM Trans. Graph. (SIGGRAPH 2007) 26, 3, Article 55 (jul 2007). DOI:

https://doi.org/10.1145/1276377.1276446
Shihao Wu, Wei Sun, Pinxin Long, Hui Huang, Daniel Cohen-Or, Minglun Gong, Oliver

Deussen, and Baoquan Chen. 2014. Quality-driven Poisson-guided Autoscanning.
ACM Trans. Graph. (Proc. SIGGRAPH Asia) 33, 6, Article 203 (nov 2014), 12 pages.
DOI:https://doi.org/10.1145/2661229.2661242

Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes,
Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design,
and Processing. Computer Graphics Forum (2016), 15. http://graphics.tudelft.nl/
Publications-new/2016/VCDPBHB16

Cem Yuksel, John Keyser, and Donald H House. 2010. Mesh colors. ACM Transactions
on Graphics (TOG) 29, 2 (2010), 15.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

https://doi.org/10.2312/egst.20141040
https://doi.org/10.2312/egst.20141040
http://kos.informatik.uni-osnabrueck.de/3Dscans
http://kos.informatik.uni-osnabrueck.de/3Dscans
http://kos.informatik.uni-osnabrueck.de/3Dscans
https://doi.org/10.1145/2816795.2818078
http://dl.acm.org/citation.cfm?id=1281957.1281965
https://doi.org/10.1016/S0925-7721(99)00032-2
https://developer.microsoft.com/en-us/windows/kinect
https://doi.org/10.1145/218380.218473
https://doi.org/10.1145/218380.218473
https://doi.org/10.1145/1276377.1276446
https://doi.org/10.1145/2661229.2661242
http://graphics.tudelft.nl/Publications-new/2016/VCDPBHB16
http://graphics.tudelft.nl/Publications-new/2016/VCDPBHB16

	Abstract
	1 Introduction
	2 Related Work
	2.1 Offline Reconstruction
	2.2 Online Reconstruction

	3 Brief Overview of Instant Meshes
	4 Field-Aligned Surface Reconstruction
	4.1 Approximate k-nn
	4.2 Multi-Resolution Hierarchy
	4.3 Point Data Update and Field Re-Optimization
	4.4 Coarse Mesh Update
	4.5 Detail Map Calculation

	5 Results
	6 Limitations and Concluding Remarks
	References

