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1 OPTIMIZATION
Unbiased gradient estimation. In all of our optimization examples we minimize an average a pixel-wise loss

over a set of parameters θ
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where i enumerates all pixels, l is the loss function, I i the reference pixel value and Î iθ a Monte Carlo estimate of
the value of pixel i .

If we naively apply automatic differentiation to the above loss function, the resulting estimate of the gradient
∇θL(θ ) is biased due to the variance in the Monte Carlo estimate of the pixel value and the use of a non-linear
loss function [Azinović et al. 2019]. For example in the case of evaluating an L2 loss of a Monte Carlo estimate Î iθ
compared to a reference I i , we obtain
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This means that the gradient estimated from the noisyMonte Carlo pixel color estimate (LHS) is off by a covariance
term from the true gradient (RHS). A direct application of automatic differentiation would evaluate both color
and gradient information simultaneously using the same random numbers. When optimizing an L1 or L2 loss, or
their respective relative variants, the bias fortunately can be eliminated by evaluating pixel color and gradient
separately (thus setting the above covariance term to zero). We provide a command reattach, which attaches
gradient information from an independent computation graph to an output variable. Within an optimization
script written in Python this can be used as follows
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1 image = render_scene(scene, spp=64, seed=seed1)

2 gradient_image = render_scene(scene, spp=16, seed=seed2)

3 reattach(image, gradient_image)

4 l = loss(image, reference_image)

5 # ...

After reattaching the gradient information, the image variable can be used to compute the loss function, without
any further code modifications. Note that our gradient estimate is unbiased for the loss functions we use in our
examples, but not for arbitrary objective functions (e.g. not for an L3 loss). Similar to Azinović et al. [2019], we
render the color image with a higher sample count than the gradient. This provides a better estimate of the loss
value without the expense of maintaining a memory-heavy AD graph involving many samples.

Multi-pass rendering. Since storing a big computation graph requires a considerable amount of GPU memory,
we split the gradient computation into multiple passes at a lower number of samples per pixel. After each pass,
we accumulate the current gradient and discard the AD graph before starting the computation of the next pass.
Using the unbiased gradient estimate, this multi-pass approach does not introduce any additional error into the
optimization.

Optimization techniques. We minimize the objective function using standard optimizers such as stochastic
gradient descent with momentum or Adam [Kingma and Ba 2014]. When optimizing for the values of 2D or 3D
textures, we improve convergence using a multiresolution approach, starting at a low resolution and gradually
increasing it as the optimization progresses. To constrain physical parameters (e.g. index of refraction) to a valid
range, we map them through a scaled sigmoid.

Statistics. We show various statistics on our optimizations in Table 1. All timings have been measured running
Mitsuba 2 on a Nvidia RTX Titan GPU (24 GB of memory).

Number of Parameters Image resolution Views SPP ∇-SPP Passes Iter. time Iterations

RGB caustics 2048x2048 128x128x3 1 256 64 10 5 s 1500
Gradient-index 160x160x160 256x256 2 40 10 4 3 s 500
Smoke 128x128x128 128x128 9 64 16 8 3 min 250
Translucent slab 256x256x64x3 128x128x3 1 16 4 6 1.5 min 170

Table 1. Various statistics on our optimization applications. The number of samples per pixel (SPP) and gradient samples
(∇-SPP) are the number of samples per render pass.

2 COMPARISON TO REDNER
Redner, the publicly available implementation of the technique by Li et al. [Li et al. 2018], is a GPU-based
differentiable renderer that supports global illumination in combination with several material models and emitter
types. It accounts for derivatives due to visibility changes at silhouette edges using edge sampling, while Mitsuba
2 relies on a reparameterization approach that is discussed in a separate article [Loubet et al. 2019].
In the following, we compare the performance of our system compared to Redner as of commit 4582928. We

disable special handling of non-differentiable visibility changes in both systems to measure the core performance
of the underlying approach for automatic differentiation and vectorized execution in the GPU. For a performance
comparison that also includes visibility-related effects, refer to the paper by Loubet et al. [Loubet et al. 2019].
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The script used to drive optimizations in Redner was adapted from the 5th tutorial distributed with the frame-
work. In Table 2, we report time per iteration for forward and backward passes, but exclude the scene construction
time (performed at each iteration in Redner) since it could most likely be avoided in cases where geometry is
not updated. For Redner, we report timings both for the default configuration options (double precision) and by
replacing the scalar type to use single precision. In these examples, we observe 10-75% faster iterations against
the default configuration of Redner when using Mitsuba 2.

Number of Parameters Image resolution SPP Redner (float) Redner (default) Mitsuba 2

Diffuse Cornell box 5 × 3 256 × 256 16 0.2336 s/it 0.3553 s/it 0.3140 s/it
Textured monkey 512 × 512 × 3 256 × 256 16 0.1785 s/it 0.2280 s/it 0.1501 s/it
Textured monkey 1024 × 1024 × 3 256 × 256 16 0.1792 s/it 0.2293 s/it 0.1503 s/it
Textured sphere 512 × 512 × 3 256 × 256 16 0.1538 s/it 0.1991 s/it 0.1132 s/it
Textured sphere 1024 × 1024 × 3 256 × 256 16 0.1548 s/it 0.1998 s/it 0.1133 s/it

Table 2. Timing comparisons against Redner.

Measurements were made on a desktop computer with an NVIDIA RTX 2080 Ti (driver version: 435.21)
with 11GB of GPU RAM. The times reported are averaged over 100 iterations of gradient descent (timings are
stable over iterations). The three scenes are shown in Figure 1. The Cornell Box is optimized for 5 diffuse RGB
coefficients, while the other two scenes are optimized for a diffuse RGB texture at 512 × 512 or 1024 × 1024
resolution. Renders were produced with a unidirectional path tracer at maximum path depth 5. The “monkey”
mesh has 31658 vertices and 62976 faces, while the “sphere” mesh has 482 vertices and 960 faces.

Fig. 1. Scenes used for the performance measurements against Redner.
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3 EXAMPLE SOURCE CODE
This section provides longer example of typical Mitsuba 2 source code, specifically an annotated path tracer with
multiple importance sampling.
/**

* This class contains the source code of a simple path tracer with multiple

* importance sampling.

*

* The integrator plugin is parameterized by two types: the first is the

* underlying floating point type 'Float', which could be an ordinary C++

* 'float', an Enoki packet type e.g. for vectorizing on AVX512, a GPU array,

* or a differentiable GPU array.

*

* The 'Spectrum' type is used for color-related computations. When building a

* monochromatic version of this plugin, it is an 1-element spectrum

* 'mitsuba::Spectrum<Float, 1>', RGB mode uses Color3f<Float>, spectral mode

* uses mitsuba::Spectrum<Float, MTS_WAVELENGTH_SAMPLES> with a larger number

* of spectral samples, and polarized mode furthermore wraps everything

* in a MuellerMatrix<T>.

*/

template <typename Float, typename Spectrum>

class PathIntegrator : public MonteCarloIntegrator<Float, Spectrum> {

public:

/* Import derived types based on the template parameters 'Float' and 'Spectrum'.

* For instance: UInt32, Vector3f, SurfaceInteraction3f, etc.. */

MTS_IMPORT_TYPES()

/// Initialize the integrators with parameters from the XML scene description

PathIntegrator(const Properties &props) : MonteCarloIntegrator(props) { }

/// Evaluates radiance along the specified path

Spectrum eval(const RayDifferential3f &ray_,

RadianceSample &rs, Mask active) const {

RayDifferential3f ray(ray_);

const Scene *scene = rs.scene;

// Tracks radiance scaling due to index of refraction changes

Float eta = 1.f;

// MIS weight for intersected emitters (set by previous iteration)

Float emission_weight = 1.f;
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/// Product of sampling weights, radiance accumulated so far

Spectrum throughput(1.f), result(0.f);

// ---------------------- First intersection ----------------------

// Generate ray intersections using the active backend (Mitsuba / Embree / OptiX)

SurfaceInteraction3f si = rs.ray_intersect(ray, active);

// Compute the opacity associated with the ray(s)

rs.alpha = select(si.is_valid(), Float(1.f), Float(0.f));

/* Did we intersect an emitter (or a set of emitters)?

If so, obtain a pointer to them. */

EmitterPtr emitter = si.emitter(scene, active);

for (int depth = 1;; ++depth) {

// ---------------- Intersection with emitters ----------------

/* If we intersected an emitter, accumulate the associated radiance. When

'Float' is a GPU array, 'any_or<true>' returns the template argument, causing

the branch to always be taken to avoid a costly horizontal reduction.

Note the use of masks in the assignment and function call to ensure correctness. */

if (any_or<true>(neq(emitter, nullptr)))

result[active] += emission_weight * throughput * emitter->eval(si, active);

// Mark wavefront elements as inactive if the ray did not intersect anything

active &= si.is_valid();

/* Russian roulette: try to keep path weights equal to one,

while accounting for the solid angle compression at refractive

index boundaries. Stop with at least some probability to avoid

getting stuck (e.g. due to total internal reflection) */

if (depth > m_rr_depth) {

/* Compute the termination probability. 'unpolarized' returns

the (1, 1) element of a Mueller matrix and is the identity

given other types. Note that the 'hmax' horizontal operation

used below is actually a vertical operation on GPU/CPU SIMD

targets since it adds up spectral channels that are

themselves arrays. */

Float q = min(hmax(unpolarized(throughput)) * sqr(eta), .95f);
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active &= rs.next_1d(active) < q;

throughput *= rcp(q);

}

/* Stop when we've exceeded the max path depth, or when there is no more work

On the GPU, the following lines cause a kernel launch that evaluates

previously queued computation. */

if (none(active) || (uint32_t) depth >= (uint32_t) m_max_depth)

break;

/* --------------------- Emitter sampling --------------------- */

BSDFContext ctx;

/// Obtain a pointer(s) to the BSDF(s) associated with the intersection(s)

BSDFPtr bsdf = si.bsdf(ray, active);

/* Only sample the emitter when the BSDF isn't a Dirac delta function. When

'Float' is a GPU array, 'any_or<true>' returns the template argument, causing

the branch to always be taken to avoid a costly horizontal reduction. */

Mask active_e = active && neq(bsdf->flags() & BSDF::ESmooth, 0u);

if (any_or<true>(active_e)) {

/* Importance sample a direction towards an emitter. Returns

'ds' of type DirectionSample3f and a Spectrum. On vectorized

targets, this will potentially importance multiple different

emitters. */

auto [ds, emitter_val] = scene->sample_emitter_direction(

si, rs.next_2d(active_e), /* test_visibility = */ true, active_e);

// Disable elements where sampling failed, or which are occluded

active_e &= any(neq(unpolarized(emitter_val), 0.f));

// Transform the direction to the light source into the local BSDF frame

Vector3f wo = si.to_local(ds.d);

/* Query the BSDF. Note that on vectorized targets, 'bsdf'

might be an array containing pointers to many different BSDFs.

In this case, Enoki's method call handler will perform a

sequence of function calls corresponding to the unique array

elements. On the GPU backend, the computation of all the

different function calls is queued up, to be flushed and
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executed in parallel at the next horizontal reduction or

method call. */

Spectrum bsdf_val = bsdf->eval(ctx, si, wo, active_e);

/* In polarized mode, 'bsdf_val' is a MuellerMatrix expressed

with respect to a local coordinate system that must now be

transformed to world coordinates. This expands to a no-op

in non-polarized mode. */

bsdf_val = si.to_world_mueller(bsdf_val, -wo, si.wi);

/* Determine probability of having sampled that same

direction using BSDF sampling. */

Float bsdf_pdf = bsdf->pdf(ctx, si, wo, active_e);

// Apply MIS weight and accumulate contribution

Float mis = select(ds.delta, 1.f, mis_weight(ds.pdf, bsdf_pdf));

// Note: the order of multiplication operations is important for polarization

result[active_e] += throughput * bsdf_val * emitter_val * mis;

}

// ----------------------- BSDF sampling ----------------------

/* Importance sample the BSDF * cos(theta).

Returns 'bs' of type BSDFSample3f and a Spectrum. */

auto [bs, bsdf_val] = bsdf->sample(ctx, si, rs.next_1d(active),

rs.next_2d(active), active);

/* In polarized mode, 'bsdf_val' is a MuellerMatrix expressed

with respect to a local coordinate system that must now be

transformed to world coordinates. This expands to a no-op

in non-polarized mode. */

bsdf_val = si.to_world_mueller(bsdf_val, -bs.wo, si.wi);

// Accumulate path throughput

throughput *= bsdf_val;

// Potential early-out on the CPU in case the throughput is zero

active &= any(neq(unpolarized(throughput), 0.f));

if (none_or<false>(active))

break;
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/// Keep track of IOR changes

eta *= bs.eta;

// Intersect the sampled ray against the scene geometry

ray = si.spawn_ray(si.to_world(bs.wo));

SurfaceInteraction3f si_bsdf = scene->ray_intersect(ray, active);

/* Determine probability of having sampled that same

direction using emitter sampling. */

emitter = si_bsdf.emitter(scene, active);

DirectionSample3f ds(si_bsdf, si);

ds.object = emitter;

if (any_or<true>(neq(emitter, nullptr))) {

/* If the sampled BSDF component is a Dirac delta function,

* that connection strategy is unavailable. */

Float emitter_pdf =

select(neq(bs.sampled_type & BSDF::EDelta, 0u), 0.f,

scene->pdf_emitter_direction(si, ds, active));

// Set emitter MIS weight consumed in next iteration

emission_weight = mis_weight(bs.pdf, emitter_pdf);

}

si = std::move(si_bsdf);

}

return result;

}

/// Declare run-time type information for Mitsuba's object model

MTS_DECLARE_CLASS()

protected:

// MIS weighting scheme: the power heuristic

Float mis_weight(Float pdf_a, Float pdf_b) const {

pdf_a *= pdf_a;

pdf_b *= pdf_b;

return select(pdf_a > 0.f, pdf_a / (pdf_a + pdf_b), 0.f);

};
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};

MTS_IMPLEMENT_CLASS(PathIntegrator, MonteCarloIntegrator);

MTS_EXPORT_PLUGIN(PathIntegrator, "Path Tracer integrator");
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