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Fig. 1. (a) Inverse reconstruction of the Nefertiti bust from a spherical starting guess with 25 rendered views (1 shown). (b) Naïve application of a differentiable
renderer produces an unusable tangled mesh when gradient steps pull on the silhouette without regard for distortion or self-intersections. (c) Regularization
can alleviate such problems by making the optimization aware of mesh quality. On the flipside, this penalizes non-smooth parts of the geometry and causes
unsatisfactory convergence in gradient-based optimizers. While the final mesh undeniably looks better, a closer inspection of the wireframe rendering reveals
countless self-intersections. (d) Our method addresses both problems and converges to a high-quality mesh. (e) Combined with an isotropic remeshing step,
our reconstruction captures fine details of the reference (f). The hyper-parameters of each method were optimized to obtain the best convergence at equal time.
Self-intersections are shown in red.

Inverse reconstruction from images is a central problem in many scientific

and engineering disciplines. Recent progress on differentiable rendering has

led to methods that can efficiently differentiate the full process of image

formation with respect to millions of parameters to solve such problems via

gradient-based optimization.

At the same time, the availability of cheap derivatives does not necessarily

make an inverse problem easy to solve. Mesh-based representations remain

a particular source of irritation: an adverse gradient step involving vertex

positions could turn parts of the mesh inside-out, introduce numerous local

self-intersections, or lead to inadequate usage of the vertex budget due

to distortion. These types of issues are often irrecoverable in the sense

that subsequent optimization steps will further exacerbate them. In other

words, the optimization lacks robustness due to an objective function with

substantial non-convexity.

Such robustness issues are commonly mitigated by imposing additional

regularization, typically in the form of Laplacian energies that quantify

and improve the smoothness of the current iterate. However, regularization

introduces its own set of problems: solutions must now compromise between

solving the problem and being smooth. Furthermore, gradient steps involving
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a Laplacian energy resemble Jacobi’s iterative method for solving linear

equations that is known for its exceptionally slow convergence.

We propose a simple and practical alternative that casts differentiable

rendering into the framework of preconditioned gradient descent. Our pre-

conditioner biases gradient steps towards smooth solutions without requir-

ing the final solution to be smooth. In contrast to Jacobi-style iteration,

each gradient step propagates information among all variables, enabling

convergence using fewer and larger steps.

Our method is not restricted to meshes and can also accelerate the recon-

struction of other representations, where smooth solutions are generally

expected. We demonstrate its superior performance in the context of geo-

metric optimization and texture reconstruction.
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1 INTRODUCTION
Differentiable rendering is an emerging tool for solving challenging

inverse problems involving light transport. Methods in this area

propagate derivatives through the full process of image formation

to minimize a user-provided objective function defined on a high-

dimensional space of scene parameters. The resulting derivatives

encode the complex and ambiguous relationship of rendered pixels

to light sources, the material, and the shape of observed objects.

Physically based variants furthermore account for interreflection to

compute derivatives due to indirectly observed objects. Compared

to existing 3D reconstruction techniques, the main allure of differ-

entiable rendering lies in its comparative lack of assumptions and

potential to outperform standard methods in challenging situations.

Yet, the availability of derivatives is no panacea: gradient-based

optimization of a non-convex objective can easily converge to local

minima representing low-quality solutions. Notably, this situation al-

most always occurs when the scene contains mesh-based geometric

representations. Optimizing a crude initial guess (e.g. a sphere) will

necessarily require large-scale deformation, which manifests in the

form of silhouette gradients that “pull” a sparse set of polygons into
a target configuration, for example towards silhouettes observed in

a reference photograph. A large gradient step could then turn part

of the object inside-out, introduce numerous local self-intersections,

or distort the triangulation so that the given vertex budget is not

effectively used.

When the optimization relies on a pure rendering loss, such is-

sues are essentially irrecoverable: geometric distortion is generally

invisible in renderings, and unobserved inverted geometry does not

generate gradients at all! Since there is no inherent correction mech-

anism, later gradient steps are likely to compound existing issues.

Seen in another way, this fragility indicates that the non-convex

objective is simply not amenable to gradient-based optimization.

Such issues are not restricted to sparse shape-related gradients: for

example, noisy derivatives of Monte Carlo methods can cause many

similar problems.

A common way to mitigate such robustness issues is to make

the optimization aware of the mesh quality, typically by imposing

regularization in the form of Laplacian or bi-Laplacian smoothness

energies. This certainly helps to stabilize the optimization, but it also

introduces a new set of problems: solutions must now compromise

between satisfying the original objective and being smooth. Regu-

larization also requires a weighting factor, which adds a challenging

hyper-parameter choice. In cases where the output contains both

smooth and non-smooth regions, there may not be a good global

setting for this parameter.

A third issue appears when first-order gradients are used to opti-

mize a discrete Laplacian energy. In this case, each variable generates

derivative terms that only affect variables in a local neighborhood:

the 1-ring in the case of common discrete Laplacian operators for

meshes. Such local information exchange along edges has been stud-

ied in iterative methods for solving sparse linear systems including

the Jacobi and Gauss-Seidel methods. Both are known for their ex-

ceptionally slow convergence precisely due to this inherent locality.

We propose a simple and practical alternative to Laplacian regular-

ization for differentiable rendering that is more robust, less sensitive

to hyperparameter choices, and which accelerates convergence at

equal time. Our method can be alternatively interpreted as casting

differentiable rendering into the framework of Sobolev precondi-

tioned gradient descent or as a re-parameterization of the input

geometry resembling differential coordinates [Sorkine 2006]. Our
preconditioned optimization biases gradient steps towards smooth

solutions, but it does so without requiring the final solution to be

smooth. In contrast to Jacobi-style iteration, each gradient step prop-

agates information among all variables, enabling convergence using

fewer and larger steps.

Ourmethod solves a sparse linear system at every iteration, which

has negligible cost compared to the primal and differential rendering

phases. It works on any domain with a suitable discrete Laplacian

operator, and we experimentally evaluate its performance in the

context of geometric optimization and texture reconstruction.

The name of our submission is inspired by an influential article by

Baraff andWitkin [1998] that pioneered the use of implicit timesteps

to improve the robustness of cloth simulation. Our method admits a

similar interpretation as an implicit timestep of a diffusion process.

2 BACKGROUND AND RELATED WORK
We now discuss relevant prior work and review fundamentals con-

cerning the Laplacian and its applications.

2.1 Differentiable Rendering
Rendering is increasingly used as a sub-component within methods

that rely on optimization to accomplish a particular task. For exam-

ple, methods in the analysis-by-synthesis category [Patow and Pueyo

2003] reconstruct the shape and appearance of objects from images,

using rendered candidate images to update a virtual scene represen-

tation. Embedded within a neural encoder-decoder architecture, a

rendering step can convert latent scene representations into images

that are consumed by convolutional layers [Genova et al. 2018]. The

scene could itself be represented by a neural network that is queried

many times during the rendering process [Mildenhall et al. 2020]. All

of these applications involve high-dimensional parameter domains

requiring first-order optimization, which has led to renewed interest

in rendering methods with an explicit differentiation operation.

Suppose that a rendering algorithm is represented as a function 𝑅

that maps an input vector of scene parameters x ∈ R𝑛 to a rendered

image y ∈ R𝑝 . If 𝑅 accounts for global illumination, an individual

scene parameter can often affect the entire image, hence the Jacobian

matrix J𝑅 = 𝜕𝑅
𝜕x ∈ R

𝑝×𝑛
is generally dense. Both of 𝑛 and 𝑝 could

be in the millions, making explicit computation or storage of this

matrix infeasible. Instead, differentiable rendering algorithms realize

efficient matrix-vector products involving this matrix without ever

constructing it. Typically, reverse-mode propagation [Griewank and

Walther 2008] is desired, which converts an image-space derivative

𝜹y into a parameter derivative 𝜹x via the product 𝜹𝑥 = J𝑇
𝑅
𝜹y.

Work on differentiable rendering algorithms falls into two broad

categories: starting with the early of work of Loper et al. [2014]

rasterization-based methods account for primary visibility and local

shading [Kato et al. 2018; Liu et al. 2019; Ravi et al. 2020; Laine

et al. 2020]. They achieve excellent performance but do not support

indirect effect like shadows and interreflection.
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2.2 Physically based methods
Another line of work targets derivatives of physically based light

simulations [Gkioulekas et al. 2016; Li et al. 2018; Zhang et al. 2019;

Nimier-David et al. 2019]. Efficient differentiation schemes in this

area exploit the physical reciprocity of light along with reversible

steps of the computation [Nimier-David et al. 2020; Vicini et al. 2021].

Visibility-induced discontinuities pose a challenge in physically-

based methods and require special treatment to avoid bias [Li et al.

2018; Loubet et al. 2019; Bangaru et al. 2020; Zhang et al. 2020].

Finally, integrals evaluated within rendering algorithms change fol-

lowing differentiation, and recent work [Zeltner et al. 2021; Zhang

et al. 2021] has investigated specialized Monte Carlo sampling strate-

gies that account for this.

This article focuses on shape reconstruction, where global illumi-

nation plays a lesser role, and we therefore use the differentiable

rasterizer of Laine et al. [2020] in our experiments. Section 4 also in-

vestigates the behavior of our method in a physically based renderer

based on Monte Carlo integration.

2.3 The Laplace Operator
The Laplace operator is the workhorse of modern geometry pro-

cessing, and familiarity is implicitly assumed by most literature in

this area. Since the main audience of this article are researchers and

practitioners in the area of (differentiable) rendering, we include a

review of relevant definitions and properties.

The Laplacian Δ is one of the elementary differential operators;

it arises in countless physical problems including the diffusion of

heat, electrostatic potentials, and incompressible fluid flow. On an

𝑛-dimensional Euclidean domain, its definition reads

Δ𝑓 =
𝜕2 𝑓

𝜕𝑥2
1

+ · · · + 𝜕2 𝑓

𝜕𝑥2𝑛
. (1)

The Laplacian possesses a well-studied set of eigenvalues and

eigenfunctions. On a 1D interval such as [0, 1], the eigenfunctions
are sinusoidal oscillations, whose frequency increases as 𝑖 →∞:

𝜆𝑖 = −𝑖2 𝜋2,

𝑓𝑖 (𝑥) =
√
2 cos(𝑖 𝜋 𝑥) . (𝑖 = 0, . . .) (2)

They provide a convenient orthonormal frequency basis of the un-

derlying domain, and this behavior also carries over to other kinds of

Laplacian operators, e.g. on curved surfaces. This is the foundation

of Fourier analysis on such general domains.

Two other aspects are relevant: the first eigenvalue 𝜆0 equals zero,

which simply shows that Δ maps constant functions to zero. Next,

the eigenvalue 𝜆𝑖 has a quadratic dependence on the index 𝑖 . In

other words, Δ greatly amplifies the magnitude of high-frequency

signals. Conversely, a hypothetical inverse operator “Δ−1” would
greatly attenuate the magnitude of high frequencies. This frequency-

dependent attenuation will be a key ingredient of our method.

Laplacians and smoothness. The Dirichlet energy 𝐸 (𝑓 ) can be used

to quantify the overall smoothness of a function 𝑓 on a Euclidean

domain Ω. It is defined proportional to the integrated squared norm

of the function’s gradient, i.e.,

𝐸 (𝑓 ) B 1

2

∫
Ω
∥∇𝑓 ∥2 dx, (3)

which can be cast into an inner product involving the Laplacian:

=
1

2

∫
Ω
∇𝑓 · ∇𝑓 dx = 𝐶 − 1

2

∫
Ω
𝑓 · Δ𝑓 dx = 𝐶 − 1

2

⟨𝑓 ,Δ𝑓 ⟩. (4)

where the effectively constant term𝐶 depends only on the boundary

conditions (i.e. 𝑓 (𝜕Ω) and ∇𝑓 (𝜕Ω)); it is therefore usually ignored

in definitions of the Dirichlet energy.

The heat equation is a partial differential equation of the form

𝜕𝑓 (𝑡, x)
𝜕𝑡

= Δx 𝑓 (𝑡, x), (5)

where the Laplacian is taken with respect to the spatial coordi-

nates. This equation models the diffusion of heat within a solid

material, as represented by a temporally and spatially varying func-

tion 𝑓 (𝑡, x). As 𝑡 → ∞, 𝑓 becomes progressively smoother and

eventually approaches an equilibrium. This equilibrium solution is

uniquely defined and has the smallest possible Dirichlet energy.

2.4 Discrete Laplacians
Consider a polygonal meshM = (𝑉 , 𝐸) with a set of 𝑛 vertices and

𝑚 edges. A generalized discrete Laplacian operator L on this mesh

can be defined as follows:

(L)𝑖 𝑗 =


−𝑤𝑖 𝑗 , if (𝑖, 𝑗) ∈ 𝐸∑
(𝑖,𝑘) ∈𝐸 𝑤𝑖𝑘 , if 𝑖 = 𝑗

0, otherwise

(6)

The weights 𝑤𝑖 𝑗 ∈ R discretize the first derivative along an edge,

and the signed addition of multiple first derivatives within L extends

the notion of a second derivative to signals onM.

Analogous to the smooth Dirichlet energy 𝐸 (𝑓 ) = − 1

2
⟨𝑓 ,Δ𝑓 ⟩, we

can now also define a Dirichlet energy in terms of L:

𝐸 (f) = 1

2

⟨f, Lf⟩ = 1

2

f𝑇 Lf . (7)

It generalizes the notion of smoothness to discrete signals f that are
sampled at vertices of the curved domainM. The missing negation

is due to a different sign convention used for graph Laplacians.

Common Mesh Laplacians. Various weights 𝑤𝑖 𝑗 can be chosen

to obtain Laplacian operators with slightly different properties.

The combinatorial Laplacian is based only on the topology of the

input graph and sets 𝑤𝑖 𝑗 = 1 for all edges (𝑖, 𝑗) ∈ 𝐸. Previous

works [Nealen et al. 2006; Botsch and Kobbelt 2004b] have observed

its good properties for mesh optimization. The cotangent Lapla-
cian [Pinkall and Polthier 1993; Dziuk 1988] derived by integrating

the Laplace-Beltrami operator over Voronoi regions yields a more

accurate discretization of the mean curvature flow, albeit with ad-

verse effects on mesh quality [Kazhdan et al. 2012]. We refer to

Botsch et al. [2010] for a review of Laplacian mesh processing.
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2.5 Sobolev Preconditioning
Section 3.4 interprets our method as a form of Sobolev precondi-

tioned gradient descent [Neuberger 1985; Karátson and Lóczi 2005;

Osher et al. 2018; Park et al. 2021] applied to inverse rendering. In

geometry processing, existing works use the Laplacian and related

operators in place of more complex mesh-energy Hessians during

a Newton-type descent [Kovalsky et al. 2016; Zhu et al. 2018; Yu

et al. 2021; Claici et al. 2017; Rabinovich et al. 2017]. Most recently,

Wang and Solomon [2021] propose a modification of the Adam opti-

mizer [Kingma and Ba 2014] by reparametrizing harmonic functions

in terms of the Laplacian’s underlying metric, resulting in an—albeit

quite different—form of Sobolev preconditioned Adam optimizer.

2.6 Active Surface Models
Our method is also related to Active Surface Models that optimize a

deformable mesh subject to extrinsic forces and an intrinsic smooth-

ness energy [Terzopoulos et al. 1988]. Motivated by this approach,

Wickramasinghe et al. [2021] applied semi-implicit regularization

to a graph neural network for surface reconstruction and volume

segmentation. In contrast, our goal is to accelerate convergence

without the typical compromises that regularization entails.

3 METHOD
Our goal is to determine a methodology for taking large descent

steps in mesh optimization problems using differentiable rendering.

To this end, we defer generalizations and modifications, and explain

our proposed technique by considering a model problem:

minimize

x∈R𝑛×3
Φ(𝑅(x)), (8)

where x ∈ R𝑛×3 collects mesh vertex positions along rows, and Φ
is a loss function measuring the reconstruction accuracy of images

produced by a renderer 𝑅 (we use a 𝐿1 loss in our experiments).

In principle, the function Φ could also examine its input in some

other way, e.g., using a trained neural computation. The relevant

property is that both 𝑅 and Φ are differentiable almost everywhere.

We assume here that 𝑅 renders images with known camera poses.

3.1 Conventional Gradient Descent
Given initial mesh vertex positions, we may attempt to optimize the

problem in Equation 8 by applying gradient descent:

x← x − 𝜂 𝜕Φ
𝜕x

, (9)

where 𝜂 > 0 is the scalar step length or learning rate.

Leveraging reverse-mode differentiation, the per-vertex gradients

𝜕Φ
𝜕x ∈ R

𝑛×3
can be efficiently computed (Section 2). For inducing

high-frequency changes based purely on shading, conventional

gradient descent can be sufficient to induce the necessary small

displacements (see, e.g., Liu et al. [2018]). For reconstruction prob-

lems, the initial shape (e.g., a sphere) may be very far from optimal,

resulting in silhouette mismatches. Differentiation of 𝑅 (e.g., via

reverse-mode autodiff) then produces two very different gradient

terms: shading gradients and silhouette gradients (see Fig. 2). Shading
gradients account for discrepancies in surface normals and tend to

be small and uniformly distributed whenmeasured on mesh vertices.

(b) Silhoue�e gradients(a) Shading gradients

Fig. 2. Geometric gradients that arise in differentiable rendering: (a) Per-
turbing a vertex position rotates the surface normal, which affects shading
computations. The resulting shading gradients are comparably smooth and
small in magnitude. (b) Silhouette gradients arise when one shape partially
occludes another. In this case, a small perturbation of a vertex position can
move the silhouette and cause a sudden change in a pixel’s intensity. These
gradients are sparse and can be very large in magnitude.

Meanwhile, silhouette gradients account for gross discrepancies and

concentrate large but sparse gradient terms on vertices composing

the shape’s silhouette in each image (under mild assumptions, a set

of size𝑂 (
√
𝑛)). Naively following silhouette gradients quickly leads

to an unrecoverable tangled mesh (see Figure 1), where shading

gradients have no opportunity to help improve. Decreasing the step-

size 𝜂 will delay this process, but the mesh nevertheless becomes

highly distorted by the time silhouettes are resolved enough for

shading gradients to dominate.

The following toy example illustrates the problematic nature of

sparse gradients in mesh optimization. Here, a 1D “mesh” made of

evenly-spaced line segments on the interval [−1, +1] is optimized

to match a reference shape covering the smaller interval [−1/2, +1/2].
The first and third images show positions (vertex indices on the

horizontal axis, positions on the vertical axis), and the second and

third image show gradients due to silhouette misalignment.

Initial state
−1

0

1

Gradient step 1

−0.25

0.00

0.25

Updated state
−1

0

1 Initial

Gradient step 2

−0.25

0.00

0.25

The first step of gradient descent pulls the outermost vertices inward,

but it moves them too far so that they end up within the “interior”

of the 1D shape. A subsequent gradient step targets the next outer

pair of vertices, and this pattern repeats to yield a tangled shape

with multiple inverted elements.

3.2 Regularization
In geometry processing, the conventional approach to tame tangled

meshes due to large variations is to append a Laplacian regulariza-

tion objective, altering the original optimization in Equation 8 to:

minimize

x∈R𝑛×3
Φ(𝑅(x)) + 𝜆

2
tr

(
x⊤Lx

)
, (10)

where L ∈ R𝑛×𝑛 is a sparse, symmetric positive definite Laplacian

matrix that discretizes Dirichlet energy [Solomon et al. 2014]. With-

out loss of generality, L also could be a power of the Laplacian, such
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as squared Laplacian energy or bi-Laplacian [Botsch and Kobbelt

2004a; Jacobson et al. 2010]. The parameter 𝜆 > 0 balances between

the original objective and regularization. Accordingly, the gradient

descent update changes to:

x← x − 𝜂
(
𝜕Φ

𝜕x
+ 𝜆Lx

)
. (11)

For large 𝜆, the regularization term dominates and the descent

behaves as a forward Euler integration of mean curvature flow,

known to be unstable even for mild step sizes [Desbrun et al. 1999].

For small 𝜆, the effect of the regularization is, of course, diminished

by this scale factor, but also by the same root cause of the forward

Euler instability: the gradient contribution Lx ∈ R𝑛×3 is a highly
local action. Mesh Laplacians have the connectivity of an adjacency

matrix. Consider multiplying L against a set of positions x which

are constant except for a “blip” at one vertex. The result will be

zero everywhere except the immediate neighbors of the blip. Under

favorable assumptions, 𝑂 (
√
𝑛) gradient descent iterations will be

necessary to propagate information of any one vertex to all other

vertices of a mesh.

Examining our toy 1D example, we observe oscillatory gradients

in the second iteration that attempt to correct distortion introduced

by the first step:

Initial state
−1

0

1

Gradient step 1

−0.5

0.0

0.5

Updated state
−1

0

1 Initial

Gradient step 2

−0.5

0.0

0.5

Appending a regularization term diffuses sparse gradients, but only

locally and dependently on the mesh resolution.

3.3 Second-order Optimization
If Laplacian regularization is such a disappointment for gradient de-

scent, then why is it so popular in geometry processing? The answer

is in that subfield it is much more common to apply second-order

optimization such as Newton’s method. As an important special

case, if all other objective terms are quadratic convex functions of x
— like for instance tr

(
x⊤Lx

)
, then a single step of Newton’s method

leads to the global optimum. What if we tried to apply Newton’s

method to the regularized problem in Equation 10? The resulting

update is given by

x← x − 𝜂
(
𝜕2Φ

𝜕x2
+ 𝜆L

)−1 (
𝜕Φ

𝜕x
+ 𝜆Lx

)
, (12)

where the Hessian of the regularization term is simply the Laplacian

matrix L. Examining our toy 1D example, a single Newton iteration

suffices to smoothly move all vertices into essentially the right place:

Initial state
−1

0

1

Gradient step 1

−0.5

0.0

0.5

Updated state
−1

0

1 Initial

Gradient step 2

−0.5

0.0

0.5

The second step is small in magnitude and relaxes the interior while

correcting the endpoint positions. Unfortunately, the Hessian of the

differentiable rendering term is far too complicated:

𝜕2Φ

𝜕x2
=

𝜕2Φ

𝜕𝑅2

𝜕𝑅

𝜕x
+ 𝜕Φ

𝜕𝑅

(
𝜕𝑅

𝜕x

)
2

. (13)

These second-order terms are computationally expensive and deli-

cate to compute. They are unavailable in many automatic differen-

tiation systems. If the renderer 𝑅 accounts for global illumination,

transparency, or has differentiable lighting parameters, the resulting

matrix 𝜕2Φ/𝜕x2 ∈ R𝑛×𝑛 may be dense. Requiring𝑂 (𝑛2) storage and
𝑂 (𝑛3) computation for linear solving per iteration, this is intractable
for even modest mesh resolutions.

The role of

(
𝜕2Φ/𝜕x2 + 𝜆L

)−1
can be understood as diffusing the

(potentially sparse and concentrated) gradient updates over the

entire domain. Our key idea is to achieve this diffusion without

incurring the cost of a full-blown second-order optimization.

3.4 Modified Gradient Descent
Our proposed modification of the gradient descent update is to pre-
condition the original objective gradients with a convex combination

of the identity matrix I and the mesh Laplacian L:

x← x − 𝜂 (I + 𝜆L)−𝑝 𝜕Φ

𝜕x
. (14)

where 𝑝 ≥ 1 further controls the amount of diffusion and later en-

ables a useful reparameterization interpretation that invites tuning

of momentum contributions. For now, it suffices to consider 𝑝 = 1,

though ultimately our final update rule will be most analogous to

𝑝 = 2. Since I + 𝜆L is sparse, the associated linear system can be

solved efficiently. In geometry processing, a standard choice for L
would be the cotangent Laplacian [Pinkall and Polthier 1993], which

depends on edge lengths besides the discrete mesh connectivity.

A potential disadvantage of this construction is that the coupling

between Laplacian and evolving vertex positions can introduce sin-

gularities during descent [Kazhdan et al. 2012]. The combinatorial

Laplacian lacks this dependence and furthermore has been shown

to promote more regular tessellations [Nealen et al. 2006]. Counter

to these observations, we did not observe singularities or noticeable

qualitative differences between cotangent and combinatorial Lapla-

cian in our experiments. Given the qualitative similarity, we prefer

the combinatorial Laplacian mainly for its computational efficiency:

thanks to the purely topological dependence, a potentially expensive

factorization of Equation 14 can be reused across iterations.

The gradients resulting from our formulation diffuse the sparse

silhouette gradients similar to the Newton step:

Initial state
−1

0

1

Gradient step 1
−0.5

0.0

0.5

Updated state
−1

0

1 Initial

Gradient step 2
−0.5

0.0

0.5

The overall step size is more approximate: a full step (𝜂 = 1) is

usually ideal in a second-order method, whereas momentum or a

line search to determine 𝜂 is needed in our case.

There are various ways of interpreting our proposed approach.

Quasi-Newton method. Our formulation can be viewed as a modi-

fication of the full Newton’s update in Equation 12, where the exact
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Hessian of the original objective in the gradient preconditioner is

replaced with the identity I, i.e.,

x← x − 𝜂 (I + 𝜆L)−1
(
𝜕Φ

𝜕x
+ 𝜆Lx

)
, (15)

the remaining difference being the presence of the regularization

in the gradient term +𝜆Lx. This modified update accelerates con-

vergence of the regularized update from Equation (11) and will

therefore still converge to a regularized solution. In contrast, our

goal is to benefit from accelerated convergence without compromis-

ing on minimizing Φ, hence we furthermore replace the last term

in parentheses with the pure rendering gradient 𝜕Φ/𝜕x. Omitting

this step retains the behavior of regularization, while stabilizing

convergence with large step sizes. In this way, we may view our

descent as a form of Sobolev or inverse-Laplacian preconditioning.

Diffusion reparameterization. A single implicit Euler timestep

of coordinate-wise heat diffusion of any vector-valued quantity

u ∈ R𝑛×3 over the mesh as a graph has the form

argmin

x
1

2
∥x − u∥2 + 𝜆 1

2
tr

(
x⊤Lx

)
, (16)

whose solution is revealed by the Euler-Lagrange equation:

x = (I + 𝜆L)−1 u (17)

In this view, 𝜆 may be seen as the temporal duration of diffusion. For

a fixed Laplacian L, the Jacobian of x as a function of the introduced

variables u is simply our inverted matrix expression:

𝜕x
𝜕u

= (I + 𝜆L)−1 . (18)

Thus, an alternative interpretation of our update in Equation 14, is

conventional gradient descent based on a reparameterized problem

minΦ(𝑅(x(u))) involving a single-step of implicit heat diffusion

via the chain rule:

u← u − 𝜂 𝜕x
𝜕u

𝜕Φ

𝜕x
. (19)

Together with Equation 17, the corresponding update rule for the

positions x reduces to

x← (I + 𝜆L)−1 (u − 𝜂 𝜕x
𝜕u

𝜕Φ

𝜕x
) = x − 𝜂 (I + 𝜆L)−2 𝜕Φ

𝜕x
, (20)

which is equivalent to Equation 14 with 𝑝 = 2.

These reparameterized coordinates u bear some resemblance to

the differential coordinates of Lipman et al. [2004] and Sorkine [2005]

defined as u = Lx, which they then use in a least-squares setting.

Descent can also be applied in the parameterization by x = L−1u,
which corresponds to the asymptotic case 𝜆 →∞. Special care must

be taken to handle the rank deficiency of L, e.g., constraining the po-
sition of one vertex per connected component [Lipman et al. 2004].

Having shown the equivalence of the reparameterized and pre-

conditioned update rules above, working with the coordinates u
may appear circuitous. However, we will soon see that there are

subtle differences that enable further quality improvements. Re-

gardless of the preferred interpretation, we demonstrate substantial

improvement over raw and Laplacian regularized gradient descent.

Compared to gradient descent, our method diffuses concentrated

silhouette gradients and smoothly moves the entire mesh. Com-

pared to Laplacian regularization, we do not modify the original

objective function and consequently, we are less sensitive to the

hyper-parameter 𝜆. This means that the step size 𝜂 can be signifi-

cantly larger without fear of instability or mesh tangling.

3.5 Momentum and Variance
Practical usage of gradient descent often benefits from introducing

momentum terms. We similarly find that this noticeably improves

the quality of our results. Let us consider some descent variants

before arriving at our proposed update rule. In particular, we will

apply momentum modifications to the update of the parameters u
which linearly control the mesh positions via Equation 17.

The classicmomentum variant involves the following update rule:

g← (I + 𝜆L)−𝑝 𝜕Φ

𝜕x
,

m1 ← 𝛽1m1 + (1 − 𝛽1)g,

u← u − 𝜂 m1

1 − 𝛽𝑘
1

, (21)

where g,m1 ∈ R𝑛×3 represent the descent step and first-order mo-

ment estimate, 0 ≤ 𝛽1 ≤ 1 controls the decay, the power 𝑘 is the

iteration number, and the division by 1 − 𝛽𝑘
1
conducts de-biasing.

The widely used Adam optimizer [Kingma and Ba 2014] extends

this update rule with a component-wise preconditioning scheme

based on second-order moments:

m2 ← 𝛽2m2 + (1 − 𝛽2) g2,

u← u − 𝜂
(

m1

1 − 𝛽𝑘
1

) / (√
m2

1 − 𝛽𝑘
2

+ 𝜀
)
, (22)

where matrix exponentiation, division, and the square root are ap-

propriately component-wise.

We observed that aggressive steps resulting from this component-

wise preconditioner tend to disturb the smoothness of the result. We

therefore prefer a more uniform adaptation and refer to this update

rule as UniformAdam, which differs from AdaMax [Kingma and

Ba 2014] that applies the infinity norm over time. We state our final

update rules incorporating this change in full for convenience:

g← (I + 𝜆L)−1 𝜕Φ

𝜕x
,

m1 ← 𝛽1m1 + (1 − 𝛽1) g,
m2 ← 𝛽2m2 + (1 − 𝛽2) g2,

u← u − 𝜂

(1 − 𝛽𝑘
1
)
√
∥m2 ∥∞
1−𝛽𝑘

2

m1, (23)

where

x(u) = (I + 𝜆L)−1 u,

and again, g2 is the component-wise square.

3.6 Comparison of Gradient-based Optimizers
Figure 4 compares six different gradient-based optimization schemes.

This comparison also reveals an interesting point: preconditioning

based on second-order moments leads to differences between opti-

mization on x versus optimization of u due to the component-wise
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Time

Fig. 3. Our method can benefit from periodic re-meshing steps, particularly when the input shape is too coarse, or when it has an unsuitable mesh topology
that leads to distortion. This figure shows an extreme case, where we recover the Stanford dragon starting from an icosahedron. Intermediate insets visualize
the shape following remeshing steps.

GD

T-Shirt

GD+Momentum

Adam
(Preconditioned)

Adam
(Parametrized)

UniformAdam
(Preconditioned)

UniformAdam
(Parametrized)

Suzanne Planck Bob Bunny Cranium

Fig. 4. We compare several first-order optimizers with a consistent choice
of two diffusion steps (𝑝 = 2). The step size was adjusted to obtain the best
quality at equal time in each case. (1) Vanilla gradient descent produces
a comparably blurry result. (2) Momentum improves quality noticeably.
(3) Aggressive component-wise preconditioning in the Adam algorithm
disturbs the smoothness of the output. (4) Performing the optimization
on a “differential coordinate” parameterization of the mesh improves this
behavior, though some non-uniformity remains. (5,6) Our UniformAdam
method produces the best results, with comparable quality on both domains.

division in Equations (22) and (23). The results shown in this paper

are based on an optimization of the parametric representation u.

3.7 Remeshing
Our method is easily combined with a remeshing step applied once

or periodically during the optimization. Figures 3 and 5 showcase re-

sults obtained with the technique of Botsch and Kobbelt [2004b], by

isotropically remeshing the shape with a target edge length equal to

half of the current average value. Isotropic remeshing is harmonious

with our use of the combinatorial Laplacian L, as both operations

prefer a regular surface tessellations. We remesh at manually speci-

fied timesteps and decrease the step size by a factor of 0.8 each time

(a) Regularized (b) Ours, no remeshing

(c) Ours, denser initial shape (d) Ours, with remeshing

0.01 0.02 0.03 0.04 0.05 0.06

Voronoi cell area

Fig. 5. The effect of re-meshing during an optimization. (a) Regularized
reconstruction of the challenging Cranium starting from a ∼10K vertex
icosphere produces a highly distorted mesh. (b) Our method improves upon
this and, (c) unsurprisingly can further improve detail with an increased
vertex budget of∼ 35K vertices, though this also introduces artifacts: observe,
e.g., the missing hole above the zygomatic arch. (d) We obtain the best
results by optimizing at the original resolution for half of the time, remeshing
to increase the vertex count ∼ 3.5×, and continuing to optimize. This adapts
the mesh connectivity to the tentative solution, enabling more reliable
convergence to a substantially more uniform result. Note that the mesh is
still topologically a sphere: the reconstruction automatically extrudes two
partial “bones” that meet in the middle to produce the arch.

to improve stability; finding the optimal schedule and incorporating

curvature adaptivity are both interesting directions for future work.

3.8 Numerical Solution
Our method requires the solution of a sparse linear system based on

the connectivity of the input mesh. This system is strictly positive

definite for finite 𝜆 > 0, and the addition of an identity leads to good

numerical conditioning. We experimented with two approaches: the

conjugate gradient method, and a direct solver based on a fill-in

reducing sparse Cholesky factorization.

The conjugate gradient method builds on matrix-vector multi-

plications involving the system matrix. We use a sparse matrix

representation, though we note that such a multiplication could in

principle also be realized on top of an existing mesh data structure.
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Fig. 6. Large gradients steps can introduce considerable non-uniformity in this single-view optimization of a sphere towards a larger reference sphere. Our
method (top row) converges to a high-quality solution within a few hundred iterations, while regularization produces meshes with unsatisfactory distortion
for different strengths of the regularization parameter 𝜆. The solution eventually converges to a maximally smooth shape when smoothness is prioritized too
much. Plots of the individual loss terms reveal how the image loss is first optimized at the expense of regularization, which then catches up once the image
loss has reached its minimum. Our method does not require this trade-off between two competing objectives.

We use CHOLMOD [Chen et al. 2008] for the second approach,

which exposes numerous strategies and heuristics: we use the sim-
plicial method and nested dissection (NESDIS) ordering, which we

found to produce factors with the greatest degree of sparsity. Our

reliance on a combinatorial Laplacian is beneficial here, since the

Cholesky factor can be reused across iterations. Remeshing steps

must, however, update the factorization to account for the updated

mesh connectivity. The overhead introduced by the factorization

is on the order of a few optimization steps (see Table 1). Solving

linear systems using the direct solver was always multiple orders

of magnitude faster in our experiments. However, we observed in

synthetic experiments that the computation time of the one-time

factorization step grows super-linearly as a function of mesh size.

This was not a concern in our case—however, there could be a point

where the conjugate gradient method becomes competitive, and we

therefore also evaluate its performance.

4 RESULTS
We now turn to results and remaining technical details.

Large timesteps. Figure 6 optimizes the 3D mesh of a sphere from

a single viewpoint so that it matches a reference image of a larger

sphere, which resembles the motivational 1D examples shown in

Section 3. The geometry is purely emissive, which leads to rendered

images that are essentially binary. We intentionally disable shading

in this way to isolate the effect of the sparse silhouette gradients.

Our method converges within a few hundred iterations (top row).

We then vary the 𝜆 parameter of the regularization baseline (next 3

rows) to show configurations where there is too little, just enough,

and too much regularization. With regularization, descent eventu-

ally converges to a spherical shape of the right size, but the geometry

is highly non-uniform. Prioritizing regularization causes the opti-

mization objective to be ignored in favor of smoothness.

The rendering- and Laplacian loss terms in the plots on the right

show how silhouette-related changes dominate the first part of the

optimization, which disturbs the uniformity of the initial mesh.

Regularization then tries to catch up—however, once the silhou-

ette is roughly in place, it is difficult to improve mesh uniformity

without breaking up the silhouette. Due the fundamental compro-

mise between the two loss terms, the optimization eventually stag-

nates in a 𝜆-dependent stalemate. The regularized result could be

improved by a longer optimization using a very small learning rate;

the advantage of our method is its ability to adjust the silhouettes

and preserve the smoothness of the mesh while taking large steps.
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Fig. 7. Inverse shape reconstruction of targets with different topology and levels of detail. We compare the quality and convergence of a regularized differentiable
renderer based on Laplacian (L) and bi-Laplacian (L2) smoothness energies to our method. Results were obtained at equal-time using optimized hyper-
parameters. The bottom three rows visualize image loss, Dirichlet energy, and geometric (Hausdorff) distance to the ground truth. Our method reliably converges
to solutions that are simultaneously geometrically uniform and close to the reference. The plots in the second-to-last row show how our preconditioning
approach gradually decreases smoothness to match the reference, while regularized differentiable rendering aggressively does so in the first few iterations.

Mesh reconstruction. Figure 7 provides a comprehensive compari-

son of methods in a reconstruction of six meshes using both shading

and silhouette gradients and observation from multiple views (de-

tails in Table 1). In some cases, the initial state of the optimization

was specially adapted to the topology of the desired output. For

example, the Bob optimization uses a toroidal initialization. One

and four holes have been cut into the spherical initializations of the

Planck and T-shirt optimizations, respectively.

The first three rows depict initialization and regularization base-

lines. The fourth row shows results produced by our re-parameterized

update rule from Equation (23). The last three rows visualize the

decay (or increase!) of the image loss, Dirichlet energy, and aver-

age bidirectional Hausdorff distance over time. The descent step

size was optimized on a per-shape basis to achieve the best recon-

struction quality at equal time, and is provided for each scene in

Table 1. We do not change the step size during the optimization in
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Fig. 8. The benefits of our method are more pronounced when only a few viewpoints are available. In this case, sparse gradient steps lead to substantial
distortion in the regularized reconstruction (top) revealed by the wireframe visualization. The set of silhouette vertices seen by any particular camera eventually
becomes dense as the number of viewpoints tends to infinity. Even so, regularization-based optimization remains somewhat fragile, and the meshing can often
change significantly when extra views are added (compare, e.g., the nose of the regularized Bunny with 25 and 49 views).

our experiments. For the regularization baselines, we additionally

optimized the regularization weight 𝜆 on a per-shape basis, while

our method uses a fixed 𝜆 in all cases. The regularization baselines

obtain the best results using a traditional Adam optimizer with ad-

ditional component-wise preconditioning, while the results of our

method use UniformAdam (Section 3.5).

In general, we find that our method reliably converges to high-

quality meshes, while the effects of regularization are more nuanced

and problem-dependent. Following prior work [Liu et al. 2019; Chen

et al. 2019; Laine et al. 2020; Hasselgren et al. 2021; Luan et al.

2021], we use the bi-laplacian (L2) in Equation 10 to compute the

regularization term, i.e.
𝜆
2
∥Lx∥2. We also examine the behavior of

the Laplacian (L) as a regularizer, which behaves similarly.

The second-to-last row depicting smoothness of solutions over

time reveals striking differences in the convergence behavior of the

various methods: starting with a maximally smooth initialization

(e.g. a perfect icosphere), our method gradually decreases smooth-

ness as needed to introduce spatial detail. Plots of regularization-

based techniques begin with a vertical cliff that is introduced when

geometric gradients attempt to pull the silhouette into place.

Influence of the number of viewpoints. Figure 8 compares the re-

construction quality of our method and a regularized baseline as the

number of available viewpoints increases. Naturally, more views en-

code additional information that can be leveraged to reduce ambigu-

ity and improve reconstruction quality. Each viewpoint contributes

information about its respective set of silhouette vertices, which

reduces the sparsity of these problematic gradients. Still, we observe

noticeable changes and instability in baseline reconstructions even

when the number of viewpoints is relatively large.

Video. Please see the supplemental video for animated conver-

gence visualizations of Nefertiti, Cranium, and other results.

Influence of the 𝜆 parameter. Our method has a tunable parameter

𝜆 that controls the implicit time step of the diffusion process. For

𝜆 = ∞, preconditioning computes the steady-state solution of the

heat equation, while 𝜆 = 0 disables our method. Figure 9 illustrates

equal-iteration reconstruction results using different values of this

parameter. We generally use values in the range 15-50. Extremely

large values (or 𝜆 = ∞) significantly dampen high-frequencies,

which can impede our method’s ability to reconstruct fine details.
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Fig. 9. Equal-iteration results of our method using different values of 𝜆.
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Fig. 10. Monte Carlo texture reconstruction. Our method broadly applies
to any situation involving sparse or high-variance gradients. Here, we use it
to accelerate the reconstruction of a high-resolution texture rendered by
a Monte Carlo path tracer at ∼ 1/13 resolution. Each rendering step only
observes a fraction of texels, which introduces variance (column 2). Due
to the inherent loss of information, a lower-resolution reconstruction is
expected in this setting. Regularization can improve quality over time but
fails to suppress newly added variance (column 3). Diffusing sparse gradients
using our preconditioner accelerates convergence and closely reproduces
the rendered target, while being smooth in texture space (column 4).

Texture reconstruction using Monte Carlo sampling. We initially

motivated our method as an acceleration scheme for taking large

steps in mesh reconstruction based on differentiable rendering. Tak-

ing stock of its assumptions and requirements, we can now recog-

nize that its operating range extends beyond this motivating case:

any optimization involving sparse or noisy gradients potentially

stands to benefit given a suitable Laplacian operator to quantify

smoothness on an underlying domain. This includes albedo textures,

displacement or normal maps, 3D volumes (e.g. participating media),

temporally varying data, and potentially even alternative implicit

geometric representations like signed distance functions.

For example, consider rendering a scene containing high-resolution

textures: an individual Monte Carlo rendering will normally only

observe a small and random subset of texels, whose derivatives are

subject to further variance owing to the stochastic simulation. Han-

dling such noisy gradient estimates has previously required the use

of small optimization steps, multi-resolution optimization, and/or

regularization.

Figure 10 analyzes the benefits of our method in this setting. We

use Mitsuba 2 [Nimier-David et al. 2019] to optimize the textured

back wall (1024 × 1024 pixels) of a Cornell box-like scene with

diffuse inter-reflection. The texture starts out with a constant 50%

gray value, and the optimization objective measures the difference

between the rendered image and a reference image shown on the top

left. Renderings use a resolution of 108×108 pixels at 4 samples/pixel,

of which only 76 × 76 pixels show the back wall.

The texture resolution greatly exceeds that of the rendered view.

While the final rendering should closely resemble the target (top

left), we cannot expect to recover the original texture (bottom left)

given this inherent loss of information. Due to the constant in-

jection of variance, both naïve and regularized optimization via

Adam converge slowly, producing texture reconstructions that are

contaminated by severe amounts of fine-scale noise. Our approach

attenuates this fine-scale noise before it reaches the texture, which

accelerates convergence and produces an arguably more useful so-

lution of this highly ambiguous problem.

Implementation details. All experiments in this article were per-

formed on a Linux Ryzen 3990X workstation using a TITAN RTX

graphics card.We implemented our shape reconstruction pipeline on

top of the nvdiffrast differentiable rasterizer by Laine et al. [2020],
along with a spherical harmonics shading model [Ramamoorthi and

Hanrahan 2001] evaluated in PyTorch [Paszke et al. 2019].

Geometric reconstruction from images normally involves obser-

vations from multiple viewpoints to reduce ambiguity. During the

optimization, these viewpoints could be randomly chosen as part of

a stochastic gradient descent (SGD) procedure or rendered all at once.
Even when random sampling is used, it can be beneficial to process

groups of viewpoints inmini-batches. In this case, preconditioning is
only necessary once and can be applied to the accumulated position

gradients.

In our case, relatively fewfixed viewpoints are used in experiments—

concrete numbers for each scene are available in Table 1. At each

iteration, we render the tentative shape reconstruction from this set

of viewpoints in one large batch and compute the error as the mean
absolute error (MAE) across pixels of all viewpoints.

Following initialization, all steps of the computation run on the

GPU: for example, we upload the sparse Cholesky factor onto the

GPU and use NVIDIA’s cuSPARSE library for sparse forward- and

back-substitution via the routine csrsm2_solve [Naumov 2011].

One point worth noting here is that sparse matrix libraries including

CHOLMOD frequently default to double precision arithmetic—for

the portion that occurs on the GPU, we found it performance-critical

to ensure the use of single precision arithmetic due to the roughly

16× lower double precision throughput on current NVIDIA GPUs.

Performance. Figure 11 decomposes the per-iteration cost of the

regularization baseline and two implementations of our method

into primal, adjoint, and regularization or preconditioning steps.

The numbers show that the additional cost of preconditioning us-

ing a sparse Cholesky factorization is negligible compared to the
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Fig. 11. We compare the per-iteration cost of our method and a baseline
using regularization. Preconditioning using a sparse Cholesky factorization
only involves a small extra cost compared to the two phases of the differ-
entiable renderer. Iterative solution of the linear system using conjugate
gradients is significantly slower. On the positive side, this approach requires
no precomputation of a factorization and is very easy to implement. The
cost of the one-time Cholesky factorization is shown in Table 1.
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(significant) time spent on the primal and adjoint rendering phases.

Iterative solution of the linear system using conjugate gradients is

feasible, albeit at significantly higher per-iteration cost.

Table 1 provides further information about the size of meshes

in our experiments, the number of views, and cost of the one-time

factorization step.

5 CONCLUSION
Differentiable rendering is a promising new tool for solving chal-

lenging inverse problems in diverse disciplines that seek to derive

understanding from images. Yet, anyone who has tried working with

a differentiable rendererwill recall their initial bitter disappointment:

inversion of even a few nontrivial parameters leads to ambiguous

and non-convex objectives, causing gradient-based optimization to

simply explode or find absurd solutions leveraging this ambiguity.

To render this framework practical, we must inject knowledge

about the expected nature of a solution, which has traditionally

involved regularization that necessarily compromises on solving

the original problem. Our method represents a large step towards

robust geometry optimization using a preconditioner that alleviates

issues arising from the derivative of the visibility in a scene.

Our method is computationally cheap, easy to implement, and it

substantially improves the quality of reconstructions at equal time.

At the same time, it is not flawless: distortion and self-intersections

can still occur, as seen in some of our results. It cannot change the

topology by punching holes or melding overlapping geometry like

the extruded bones forming an arch in Figure 5. Unconditionally ro-

bust geometric optimization will clearly require further innovation

on these fronts.

Our approach also shows how going to second order in a subset

of the problem can greatly improve the robustness within an overall

first-order optimization. Real-world usage of differentiable render-

ing requires simultaneous optimization of camera pose, geometry,

and textures. Like a Dirichlet energy, this tightly couples the degrees

of freedom: we could, e.g., change the color of a rendered pixel by ad-

justing the observed texel, moving mesh vertices or UV coordinates,

or by rotating the camera. These relationships are not “perceived”

by first-order descent, which must take tiny steps to navigate this

complex optimization landscape. Generalizing such partial use of

second-order optimization to other parameter combinations is a

promising direction for future work.
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