Anisotropic Gaussian Mutations for Metropolis Light Transport
through Hessian-Hamiltonian Dynamics

Tzu-Mao Li Jaakko Lehtinen Ravi Ramamoorthi Wenzel Jakob Frédo Durand
MIT CSAIL Aalto University University of California, San Diego ETH Ziirich MIT CSAIL
NVIDIA

\

OURS

BDPT

OURS MEMLT MMLT

Figure 1: CARS: Equal-time (20 minutes) comparison on the cars scene, with a static car and a moving car lit by an area light. The direct
lighting is computed separately. The interior of the car is enclosed by near-specular glass windows, which gives rise to specular-diffuse-
specular (SDS) paths that are challenging to sample. The three insets show the renderings of our method (H*MC), Manifold Exploration
Metropolis Light Transport (MEMLT), Multiplexed Metropolis Light Transport (MMLT), and Bidirectional Path Tracing (BDPT). The reference
(REF) is rendered by our method in roughly 15 hours. BDPT cannot efficiently sample the sparse contribution function and suffers from severe
noise. MMLT tends to get trapped in the hard-to-find features and produces correlated noise. MEMLT specializes in finding difficult static
specular paths, but does not consider the anisotropy in the time domain, resulting in ghosting artifacts. Our method can efficiently resolve the
hard-to-find SDS paths like the specialized method, and is more general so that it can resolve moving caustic paths in the window by capturing

the correlation between the time domain and path space.

Abstract

The simulation of light transport in the presence of multi-bounce
glossy effects and motion is challenging because the integrand is
high dimensional and areas of high-contribution tend to be narrow
and hard to sample. We present a Markov Chain Monte Carlo
(MCMC) rendering algorithm that extends Metropolis Light Trans-
port by automatically and explicitly adapting to the local shape of
the integrand, thereby increasing the acceptance rate. Our algorithm
characterizes the local behavior of throughput in path space using
its gradient as well as its Hessian. In particular, the Hessian is able
to capture the strong anisotropy of the integrand. We obtain the
derivatives using automatic differentiation, which makes our solu-
tion general and easy to extend to additional sampling dimensions
such as time.

However, the resulting second order Taylor expansion is not a proper
distribution and cannot be used directly for importance sampling. In-

stead, we use ideas from Hamiltonian Monte-Carlo and simulate the
Hamiltonian dynamics in a flipped version of the Taylor expansion
where gravity pulls particles towards the high-contribution region.
Whereas such methods usually require numerical integration, we
show that our quadratic landscape leads to a closed-form anisotropic
Gaussian distribution for the final particle positions, and it results
in a standard Metropolis-Hastings algorithm. Our method excels at
rendering glossy-to-glossy reflections on small and highly curved
surfaces. Furthermore, unlike previous work that derives sampling
anisotropy with pen and paper and only considers specific effects
such as specular BSDFs, we characterize the local shape of through-
put through automatic differentiation. This makes our approach
very general. In particular, our method is the first MCMC rendering
algorithm that is able to resolve the anisotropy in the time dimension
and render difficult moving caustics.

CR Categories: 1.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray Tracing

Keywords: global illumination, Metropolis light transport

1 Introduction

Light transport phenomena such as caustics, multiple-bounce glossy
transport and motion blur often concentrate high contributions in a
narrow volume within the high-dimensional sample space. While
efficient methods exist for local importance sampling of individual
scattering events, their combined effect on path throughput is intri-
cate and hard to sample, leading to noisy images. Figure 2 shows a

g

(a) RING

/S

(b) — 0 slice of path space (4) traditional, 128 proposals
(accept rate 59.37%)

(f) ours, 128 proposals
(accept rate 75.78%)

(e) schematic view of
Manifold Exploration

N2 green:accept, red:reject

(¢) scene configuration

(g) traditional,
1024 MCMC states
(accept rate 57.52%)

/

iginal H ¢ original
inset H inset

(i) our proposal distribution
is a closed-form Gaussian

(h) ours,
1024 MCMC states
(accept rate 92.29%)

Figure 2: RING EXAMPLE. (a) A motivating example showing the caustics caused by a highly-glossy gold ring, lit by a distant point light. (b)
A slice of the two-bounce indirect light field around the red star, where x represents one of the dimensions in screen-space, and 0 represents
one of the dimensions along the BRDF sampling direction (the configuration is shown in (c)). The path contribution is sparse, and most
of the contributions are zero. (d) The green/red dots represent the accepted/rejected proposal samples of a traditional MCMC rendering
algorithm [Kelemen et al. 2002], which uses isotropic mutation that makes the sampling inefficient. (e) We also show the schematic of Manifold
Exploration [Jakob and Marschner 2012], which only travels on the tangent of a lower dimensional space. (f) Our approach builds a Gaussian
approximation around the neighborhood, enabling us to efficiently traverse the target function locally. Some samples are rejected due to the
adaptivity, but it still results in a higher acceptance rate. (g)(h) We show the zoomed out slice (the positions of the original insets (d) and (e)
are at the bottom of the images) with dots now representing the samples obtained by simulating the Markov chain for 1024 states; our method
explores the space more thoroughly. We also show the false color visualization of the Gaussian approximation in (i), which takes the width of

the function into consideration.

caustic caused by a glossy gold ring. The integrand (Figure 2 (b))
is sparse: for points on the floor (x), only a few incident directions
(0) contribute radiance through reflection. Even in this simple scene,
sparsity makes standard numerical integration methods inefficient.
The region of high-contribution is continuous, but highly anisotropic,
and the anisotropy varies over the integrand. In this paper, we present
a general solution by extending Metropolis Light Transport [Veach
and Guibas 1997] (a Markov Chain Monte Carlo sampler) to exploit
the local structure of the path contribution function over its entire
high-dimensional domain.

Adapting to the local anisotropic behavior of the integrand has been a
long-standing challenge in rendering. Previous work has focused on
model-based characterizations of anisotropy that are tied to specific
effects (specular transfer, motion, etc.) [Jakob and Marschner 2012;
Belcour et al. 2013; Kaplanyan et al. 2014], and combining them is
not easy. Closest to our work is Manifold Exploration [Jakob and
Marschner 2012] and Half-vector Space Light Transport [Kaplanyan
et al. 2014; Hanika et al. 2015] which use assumptions about the
mirror direction and specular reflection to derive major directions of
anisotropy (Figure 2(e)), and walk along a lower-dimensional mani-
fold. In contrast, we seek a general solution that can characterize the
“thickness” of the manifold in all directions, avoiding case-specific
manual derivations.

Adapting to the local behavior of the integrand boils down to two

main problems: 1) characterizing the anisotropy using local infor-
mation and 2) sampling according to the derived information. We
solve 1) by characterizing the local throughput using its derivatives.
Since the gradient provides weak directional information, we also
use the second derivative, the Hessian matrix. Whereas the gradient
points only into the direction of the strongest increase, the Hessian
additionally captures the correlation between coordinates. While the
Hessian has been used before in rendering, e.g. [Holzschuch and
Sillion 1998; Schwarzhaupt et al. 2012], its manual derivation is te-
dious and has usually been restricted to specific transport phenomena
such as diffuse-only. In contrast, we use automatic differentiation,
e.g. [Griewank and Walther 2008], which allows us to handle general
effects.

While the Hessian captures anisotropy well, the second problem,
sampling, remains: it is not possible to directly sample from the
resulting quadratic approximation because it does not define a proper
distribution and grows to infinity. Instead, we start from Hamilto-
nian Monte Carlo (HMC) [Duane et al. 1987], a MCMC sampling
algorithm that proposes new sample locations by simulating the
dynamics of a particle that starts at the current sample with a random
initial velocity. The particle evolves under gravity in a landscape
composed of the contribution function flipped upside down so that
the particle is attracted to high contribution areas (low height) by
gravity. Crucially, we do not apply HMC directly: this would be
too expensive, because it would require numerical integration to

generate just a single sample, and each integration time step would
involve costly ray tracing, shading, and derivatives which do not
directly contribute to the image. In practice, up to a hundred time
steps per sample may be needed [Neal 2010]. Instead, we apply a
modified version of HMC that results in closed-form integration. As
we show in the paper, running Hamiltonian dynamics on a 2nd-order
function with a Gaussian distribution of initial momentums leads
to a Gaussian distribution of final positions, and it results in a stan-
dard Metropolis-Hastings sampling. While traditional Metropolis
sampling also uses a Gaussian distribution of proposals, it is usually
isotropic and is centered on the current sample. In contrast, our
Gaussian proposal is anisotropic, conforms to the shape of the con-
tribution function, and is centered towards higher values according
to the local gradient and Hessian.

Our method is general both theoretically and practically thanks to the
use of the 2nd-order Taylor expansion and automatic differentiation.
In particular, it can be easily extended to time for motion blur effects,
so that we are able to resolve the correlation between path-space
and time for a light path that contains a moving caustic in a window
(Figure 1). We focus on surface rendering in this paper, though
our general approach could be extended to handle a variety of other
phenomena such as BSSRDFs or participating media.

In summary, the contributions of this paper are:

e A MCMC rendering algorithm that utilizes second-order
derivatives, where the derivatives are obtained by automatic
differentiation.

e A novel Hessian-Hamiltonian Monte Carlo rendering algo-
rithm that combines the local second-order approximation
with analytical Hamiltonian Monte Carlo and a prior Gaussian.
Specifically, we show that a simulation of HMC leads to a
simple anisotropic Gaussian distribution for sampling.

In addition to the sampling method, we also propose a modified
parameterization of the path space based on the primary sam-
ple space proposed by Kelemen et al. [2002]. The modified
parameterization reduces the correlation between the dimen-
sions (Figure 7).

2 Related Work

Our work is closely related to the rendering algorithms that build
upon MCMC sampling and the methods that utilize derivatives to
drive the sampling process.

Metropolis Light Transport. In light transport simulation, we
need to compute the path integral [Veach 1998] I; for each pixel j:

Q:Amwwmmmn ()

where (2 is path space, which contains all the light paths, h; is the
camera response function for pixel j, f (a) is the path contribution
function [Veach 1998], and y () is the area density of path .

Veach and Guibas [1997] apply the Markov Chain Monte Carlo
(MCMC) sampling method [Metropolis et al. 1953] by generating a
sequence of MCMC samples x;. A new proposal sample is mutated
from the previous sample, and probabilistically accepted or rejected.
Specifically, given a sample x;—1, and a target function f* (x),
which is commonly set to the luminance of f (x), we first generate a
proposal sample =’ with the transition probability Q (x;—1 — x’),
and set the next sample x; as follows:

o {m/ with probability a (i1 > @)
x;—1 otherwise,

where the acceptance probability a is defined as

f* (w/) Q (w/ — (Bi—l)) (3)
(@) Q (i1 — @)
This is called the Metropolis-Hastings update rule [Hastings 1970],

and it satisfies the detailed balance condition. That is, for any light
paths and y, we have

a (wz;l — :c') = min (17

f*(m)Q(m%y)a(m%y):f*(y)Q(y%m)a(y%mgzi)

If a transition function satisfies the detailed balance condition, and if
there is a strict positive probability to sample all light paths with non-
zero contribution (the ergodicity), it will converge to a distribution
proportional to the target function f*(x). Veach and Guibas then
approximated the path integral [, at pixel j using the weighted
average of the MCMC samples:

f

where b is a normalization constant, which is the average of f* (x)
over the image. Originally Veach and Guibas designed several spe-
cialized mutation strategies to cope with different lighting scenarios.
Each strategy has a different asymmetric probability distribution,
which introduces a significant challenge to implement all the strate-
gies correctly. To simplify the algorithm, Kelemen er al. [2002]
proposed to mutate the state in the random number space, which
makes the mutation agnostic to the particular visual effect. Unfortu-
nately, both the mutation strategies proposed by Veach and Guibas
and Kelemen et al. do not respect the complex local structure in the
sampling domain, which makes them inefficient in some difficult
cases.

b Ky () f (=)
IJ—Ngi*(m) , ®)

Metropolis Light Transport has been extended in several aspects.
Cline et al. [2005] proposed the Energy Redistribution Path Tracing
technique by running many short Markov chains. Lai et al. [2007]
adapted mutations with different parameters using Population Monte
Carlo. Kitaoka et al. [2009] introduced Replica Exchange that ex-
changes states between multiple Markov chains to avoid getting
stuck at local modes. All these methods require some form of local
mutation strategies. We introduce a new local sampling strategy that
adapts to the local structure of the function. Lai ef al. [2009] pro-
posed a temporal mutation strategy for MLT based on object-space
transformation. Unlike their method, which requires a specially
designed mutation, we treat the time dimension the same as the other
dimensions, and handle the correlation between coordinates using
the Hessian.

Jakob and Marschner [2012], Kaplanyan et al. [2014], and Hanika et
al. [2015] use the first derivatives of the half-vectors of a specular
light path to guide the MCMC sampling. These methods apply a
form of Newton-iteration to sample new light paths satisfying certain
constraints. While they improve the sampling efficiency of glossy
and specular surfaces significantly, their methods can sometimes be
inefficient on small, highly-curved surfaces, because of their first-
order approximation. In addition, they only account for a subset of
terms in the path contribution function, ignoring important effects
such as the Fresnel reflection or light source emission profiles. In
contrast, we utilize second-order derivatives and do not assume any
particular effect. For example, we are able to render difficult moving
caustics (Figure 1), where their methods would suffer from ghosting
artifacts.

Hachisuka er al. [2014] proposed Multiplexed Metropolis Light
Transport which combines MCMC methods with Multiple Impor-
tance Sampling [1995]. Their method is orthogonal to our algorithm,
and we build our bidirectional path tracer based on their approach.

(a) given current sample x (0) and
target function

%lﬁl

(b) flip function so that gravity pulls the particle,
sample initial momentum p (0)

(¢) simulate Hamiltonian dynamics for time T
to obtain proposal at x (T)

Figure 3: HAMILTONIAN MONTE CARLO: Given the current sample position x (0) and a target function (the 2D slice from Figure 2), a
physical analogy of Hamiltonian Monte Carlo is: (a) first it takes the logarithm of the target function and flips it upside down so that “gravity”
pulls towards high contribution areas. (b) Then it gives the current sample an initial momentum p (0) and (c) lets the point move for some time

T with respect to the geometry of the flipped function.

(a) original target function
and sample position

(b) simulate Hamiltonian dynamics
on local quadratic approximation

Np*, 2%)=
N, ¥) - M0, a?1)

(d) multiply with a prior
to limit variance
and draw proposals from red

(¢) proposals result in a
Gaussian distribution

Figure 4: HESSIAN-HAMILTONIAN MONTE CARLO: (a) Given the original function and sample position x (0), (b) we approximate the costly
Hamiltonian dynamics simulation by first constructing a local quadratic approximation at the current sample position x (0). (c) Different
initial momentum p (0) results in different proposal positions (T'), which makes (T') a random variable. We show that trajectories with a
Gaussian PDF for initial momentum result in a Gaussian PDF (the yellow shaded area) for final destination. (d) Finally, we multiply the
Gaussian with a prior (the purple shaded area) to prevent proposals from going too far when the second derivative is low. The resulting sample
proposal distribution is shown in red, and we draw our proposals from the resulting distribution.

Derivatives in rendering. Shinya et al. [1987] used a second-
order power series along with paraxial approximation to approxi-
mate the neighborhood of a ray. Irradiance caching techniques [Ward
et al. 1988; Ward and Heckbert 1992; Schwarzhaupt et al. 2012]
compute the gradients and the Hessians of the irradiance with re-
spect to the screen coordinates for sparse interpolation for diffuse
or low-glossy surfaces. Ray differentials [Igehy 1999] and path
differentials [Suykens and Willems 2001] compute the footprint
of the light paths for texture filtering using first derivatives. Chen
and Arvo [2000] use first and second-order derivatives of the spec-
ular light paths for sparse interpolation. Path gradients [Suykens
and Willems 2001] are used for hierarchical radiosity applications,
where the gradients of the paths are hand-derived. Ramamoorthi et
al. [2007] performed a first-order analysis for direct illumination
light field. Gradient-domain rendering approaches, e.g. [Lehtinen
et al. 2013; Kettunen et al. 2015], sample in the gradient domain
to exploit the sparsity of gradients in image space. They use fi-
nite differences of the path on the image coordinates, whereas our
method uses analytical derivatives on all dimensions. While finite
differences could capture the discontinuities of the signal, it is more
expensive to generate and does not scale well with dimensionality.

Our usage of derivatives differs from previous works in several
respects. First, we use automatic differentiation to compute the

derivatives, which means that we do not assume any particular effect.
This enables our method to be able to handle various combinations
of lighting scenarios. Second, we take the derivatives with respect to
all the sampling dimensions, so we can capture the high-dimensional
structure of the light path. Third, we take both the first and the second
derivatives. The Hessians enable us to take the correlation between
the dimensions of the sampling domain into account. Finally, we
apply the derivatives in the MCMC sampling context.

Automatic differentiation. Given a sequence of arithmetic oper-
ations, automatic differentiation [Griewank and Walther 2008] (AD)
generates the derivatives of the program by applying chain rules
to the computational graph of the program. Automatic differentia-
tion is different from symbolic differentiation, in that it focuses on
reusing the expressions by carefully traversing the computational
graph, making it more efficient.

Automatic differentiation has been used in computer graphics occa-
sionally [Grinspun et al. 2003; Piponi 2004; Guenter 2007] and was
used in shader programming for ray footprint estimation [Gritz et al.
2010]. Manually deriving the derivatives is tedious and error-prone,
and AD is a powerful tool that makes it possible for us to take the
derivatives of any kind of light path.

3 Hamiltonian Monte Carlo

‘We review the Hamiltonian Monte Carlo (HMC) [Duane et al. 1987]
method; see also Neal [2010] for a more thorough description and
survey. Hamiltonian Monte Carlo is a variant of the Markov Chain
Monte Carlo (MCMC) methods. HMC generates the new proposal
samples from the current sample by simulating Hamiltonian dynam-
ics driven by the landscape of the target function.

Recall that MCMC methods generate a sequence of samples x;,
whose distribution converges to a distribution proportional to a spe-
cific target function f* (x;), by forming a Markov chain of the
sample sequence. For the sake of notational simplicity, we denote
the target function as f (x). At iteration ¢ 4+ 1, a new proposal
sample is drawn from a distribution based on ;. Then the proposal
sample is probabilistically accepted or rejected. If accepted, it forms
the new state of the Markov chain. From now on, we assume that
the samples «; lie in a hypercube of [0, I]N, similar to the primary
sample space [Kelemen et al. 2002]. Operating directly on path-
space [Veach 1998] is more challenging due to its definition as a
cross product of lower-dimensional manifolds.

Figure 3 gives an illustration of Hamiltonian Monte Carlo where, in
a nutshell, state is modified by giving the current sample a random
initial velocity (or more precisely, a momentum), and simulating its
motion under gravity. The target function first needs to be “flipped”
so that high contribution regions correspond to a lower height and
samples are attracted there by gravity (Figure 3 (b)). The particle
is given an initial momentum, typically drawn from a Gaussian,
and its motion is simulated in the height field given by the flipped
contribution function for a fixed amount of time. Acceptance rules
are then applied, although if the integrator preserves energy, samples
are always accepted. This approach helps the samples stay in the
high contribution region (low height in the flipped function) because
of the effect of gravity.

Hamiltonian dynamics. Formally, Hamiltonian dynamics is a
system of differential equations defined on the Hamiltonian energy
E:

0w _on
ot op ©)
op _ OE
ot~ oz’

The auxiliary momentum variable p is introduced to drive the sam-
pling of position &, and p has the same number of dimensions as @.
The Hamiltonian energy F (z, p) is a composite of the potential en-
ergy U (z) = —log f () and the kinetic energy K (p) = sp” Ap.
The potential energy is defined in the logarithmic domain to better
capture the dynamic range of the target functions:

B(w,p)=U (@) + K (p) = ~log f () + 50" Ap, ()
where A is a user-defined “inverse mass matrix”, which represents
the inverse of the mass of the particle. Typically, it is set to a scalar
% times an identity matrix, where m is the mass, but in our work
we will use a full matrix (discussed in Section 4). The negative of
the function log f (z) is taken to enable high contribution regions to
have low potential energy (as shown in Figure 3).

We substitute the definition of the Hamiltonian energy (Equation (7))
into the Hamiltonian equation (Equation (6)), and obtain:

(3
Op _ Olog f ()
ot ox ’

Equation (8) defines a trajectory of position and momentum p over
time ¢. Intuitively, if the momentum at time ¢ is high, we will make
a large jump from the current position @ (), and if the derivatives of
the target function at (¢) are low, the increment to the momentum
will be small. Hamiltonian Monte Carlo is highly adaptive to the
local structure of the target function.

MCMC with Hamiltonian dynamics. To apply Hamiltonian dy-
namics in the context of MCMC, we first take the exponent of the
negative Hamiltonian energy:

oxp (- (e.p) = f (@) exp (50" 4p) =] (@)o(p). ©

exp (—2p” Ap), which we denote as ¢ (p), is proportional to the
PDF of a zero-mean Gaussian with covariance A~ '. To generate a
new proposal position, we pick a zero-mean Gaussian distributed
momentum p (0) with covariance A™" and a fixed time T, and
simulate the Hamiltonian dynamics to obtain the position at « (7).

The proposal position is probabilistically accepted with the probabil-
ity a((x(0),p(0)) = (z(T),p(T))), where

a((@(0),p(0)) > (& (T),p(T)))
:min(exm B (x(T),p(T)) 1)
exp (—F (2 (0),p(0))) (10)
i (LD D) 1
J (@) 6 ()

Intuitively, the acceptance rule resembles the Metropolis-Hastings
rule (Equations (2) and (3)), with the transition probability () sub-
stituted with the (unnormalized) PDF of the momentum Gaussian
¢. Furthermore, if the Hamiltonian dynamics is simulated perfectly,
exp (—F (z, p)) is a constant throughout the simulation because of
energy conservation, and the acceptance probability is 1.

Properties of Hamiltonian dynamics. More formally, given a
fixed time 7', the Hamiltonian equation creates a mapping M be-
tween (2 (0),p (0)) and ((T"),p (T)). Neal [2010] showed that
this mapping has several important properties:

e The mapping is time-reversible: if we flip the momentum
at time T and use (x (T"), —p (T')) as the input to M, the
output of the mapping would be (x (0), —p (0)). That is, if
we simulate the Hamiltonian dynamics in a backward manner
from the end point, it will go back to the starting point.

e The mapping preserves the volume: If we apply the map-
ping for a region Ry of points (x (0),p (0)), and map them
to another region R, the volumes of the two regions in the
position-momentum space remain the same (known as Liou-
ville’s theorem).

e The mapping preserves energy: the Hamiltonian energy E
(Equation (7)) remains the same after the mapping.

The first property is crucial for the detailed balance condition (Equa-
tion (4)) to hold, since it ensures that the mapping is one-to-one. The
second property ensures that we do not need to account for the Jaco-
bian of the mapping in the Metropolis acceptance rule. The energy
preservation property shows that the probability of acceptance is in
fact 1 since E (z (0),p (0)) = E(x(T),p(T)).

Unfortunately, Equation (8) does not have a known analytical solu-
tion for an arbitrary target function. It is usually required to integrate
the differential equation using numerical integrators such as leapfrog
integrators. These integrators maintain the time-reversibility and
volume-preservation, but do not preserve energy. The Hamiltonian

dynamics are approximated and the acceptance probability is no
longer 1. Furthermore, numerical integrators are expensive for light
transport simulation because each step involves costly ray tracing
operations and derivative computations of the shader.

Discussion. Hamiltonian Monte Carlo has been used in graph-
ics recently for computational design [Ritchie et al. 2015]. The
Metropolis-adjusted Langevin algorithm (MALA) [Roberts and
Tweedie 1996] is a one-step approximation to Hamiltonian Monte
Carlo. MALA makes the proposal distribution isotropic, except that
the mean of the proposal distribution is shifted by the first deriva-
tives (gradient) times a user-specified constant. Our method is also a
one-step approximation, but the proposal distribution of our method
adapts to the anisotropy of the signal, because we utilize the sec-
ond derivatives. It is possible to precondition the MALA algorithm
using a positive-definite mass matrix, such as the Fisher informa-
tion matrix [Girolami and Calderhead 2011]. However, it remains
unclear how to relate the Hessian matrix to the positive-definite
mass matrix. Betancourt [2013] proposed a SOFTABS metric that
removes the sign of the eigenvalues of the Hessian matrix using a
smooth mapping. In contrast, we treat positive and negative eigen-
values differently by directly simulating Hamiltonian dynamics on
the quadratic landscape.

4 Hessian-Hamiltonian Monte Carlo

Figure 4 provides some intuition of our sampling algorithm. We
compute the second order Taylor expansion (local quadratic ap-
proximation) of the logarithm of the target function first, where the
gradient and the Hessian are computed using automatic differentia-
tion. The quadratic function does not define a proper distribution,
since it might grow to infinity, which prevents us from directly im-
portance sampling it. Hamiltonian dynamics enables us to sample
from this quadratic function to obtain the proposal position, since it
works on any continuous function.

The Hamiltonian dynamics have an analytical solution in the case
of a quadratic function. However, we cannot use the acceptance
rule in standard Hamiltonian Monte Carlo (Equation (10)) to com-
pute the acceptance probability. It would break time-reversibility,
since each light path would have a different associated quadratic
function. Fortunately, we can derive from the analytical solution,
that the distribution of a proposal, given a Gaussian momentum, is a
Gaussian distribution (Figure 4 (c)). Therefore, we associate each
light path with a Gaussian distribution derived from the quadratic
function and Hamiltonian dynamics, and it is possible to compute
the acceptance probability using the Metropolis-Hastings rule (Equa-
tion (3)). Finally, we multiply the analytical Gaussian with a prior
Gaussian distribution to place a limit on its variance (Figure 4 (d)),
so that the proposals do not go too far away where the second order
approximation can be inaccurate.

Approximating Hamiltonian dynamics. We first show how to
derive the closed-form solution to the differential equations for
Hamiltonian dynamics (Equation (8)), given an initial momentum
and position. Then, we will show how to infer the Gaussian distribu-
tion of proposals. We start from a second-order approximation of
log f. For the sake of simplicity and without loss of generality, in
the following we assume the current position x(0) is at the origin.
Any small offset & from the origin can be approximated by:

log f () ~ %wTH:n +G e + log f (0), (11

where H is the Hessian matrix and G is the gradient vector at
log f (0). If we substitute this approximation into the Hamiltonian

equation (Equation (8)) using m%mf(m) ~ Hx + G and combine
the two differential equations, we get:
8% (t)
ot?

= AHz (t) + AG. (12)

The above equation is a standard second-order differential equa-
tion system, and has an analytical solution. We start from the one-
dimensional case, then generalize it to higher dimensions. Assuming
x is a one-dimensional variable, if we let « = AH, 8 = AG, an an-
alytical solution is:

c1exp (vat) + co2 exp (—y/at) — g ifa>0

c1 COS (\/fat) + co sin (\/fat) — g ifa<0

crt 4o + 22 if o =0,
(13)

z(t) =

which can be verified by plugging the solution back into the equation.
The constant multipliers ci1, c2 can be obtained by plugging in
the initial condition z(0) = 0, =’ (0) = Ap(0) (where p (0) is
sampled from the Gaussian distribution ¢ defined in Equation (9))
into the original Hamiltonian equation (Equation (8)). Specifically,
the constants are:

J(+422) ifa>o0
a=4q£ ifa<0
5(0) if o =0
R (14)
J(2-22) ifa>o0
= 5(0) :
c2 — ifa<O
0 ifa=0,

where we denote p (0) = Ap (0) to simplify the equation.

To illustrate, since the inverse mass A is required to be positive, if the
second derivative H is strictly negative, we consider the o < 0 case
and the trajectory x (t) becomes a linear combination of a cosine
curve and a sine curve, which oscillates in the ridges of the flipped
function. On the other hand, if the second derivative is strictly
positive, then the trajectory climbs straight up the hill and goes to
infinity as ¢ increases.

If x is an N-dimensional vector instead, the general solution of this
differential equation system becomes a linear combination of the
eigenvectors e; of the matrix AH:

N
z ()= zi(t)e, (15)
=1

where the coefficient x; (t) is similar to the one-dimensional case
(Equation (13)), but with « substituted with matrix A H’s i-th eigen-
value \;, and 3 and p (0) substituted with the projection of the vector
AG and p (0) on the i-th eigenvector e;, respectively. Again, we
can obtain the constant multipliers as in the one-dimensional case
by plugging in the initial conditions.

A Gaussian equivalent to the approximation. We have derived
an analytical trajectory for a fixed initial momentum. However, hav-
ing the analytical trajectory is not enough. Recall that Hamiltonian
Monte Carlo starts by generating a Gaussian distributed momen-
tum p (0) ~ N (07 A’l), and generates a new position proposal
z (T) at a fixed time T'. Unfortunately, a direct application of the
analytical solution to Hamiltonian Monte Carlo using the original
acceptance rule (Equation (10)) is infeasible. The gradient and Hes-
sian generally would be different at the proposal position, and the
time-reversibility would be violated.

(¢) 2 = 0.001
accept rate 82.11%

(b) 02 = 0.007
accept rate 54.02%

(@) 0?2 = 0.028
accept rate 28.96%

Figure 5: We show the effect of the prior Gaussian parameter o>
using an inset from the BATHROOM scene (Figure 8). (a) High
o2 results in low acceptance rate and a noisy image. (c) Low o
results in high acceptance rate, but produces correlated noise. (b)
We choose a o2 so that the acceptance rate falls in the ranges from
50% — 70%.

An observation from the analytical solution (Equations (13)
and (14)), is that the Hamiltonian dynamics are actually linear map-
pings from the Gaussian distributed variable p (0) to the new posi-
tion « (T') if we have ¢t = T fixed. This means that « (T') is also
Gaussian distributed since Gaussian variables are closed under linear
transform. Therefore, we can generate @ (T") using a single Gaus-
sian distribution. Furthermore, the PDF of the Gaussian can be used
as the transition probability () to compute the Metropolis-Hastings
acceptance probability (Equation (3)).

Now we will show why the mapping is linear and how to derive
the covariance and the mean of @ (7"). Again we start from the
one-dimensional case. If we plug the multipliers ¢; and c2 (Equa-
tion (14)) into the analytical solution (Equation (13)) and rearrange
the terms in one-dimensional x (1"), we have:

eXP(\/ET)Q—;;P(—\/ET) $(0)
+£ (exp (vaT) +exp (—y/aT) — 1) ifa >0
z(T) = A sin (v=aT) 5 (0)

—a

—l—g (cos (\/—aT) — 1) ifa <0
X T2 .
Tp (0) + 2= ifa=0
— sp(0)+o
— sAp(0) +o,
(16)

which is a linear function of p (0) and we denote the scaling coeffi-
cient as s and the offset coefficient as o.

For the N-dimensional case, since & (T) is a linear combination of
z; (T') (Equation (15)), it is still a linear transform. Moreover, if
we write z; (") = s; - pi (0) + 05, where p; (0) is the projection of
P (0) on the i-th eigenvector e; of the matrix AH, we can write out
the linear transformation in matrix form:

x (T) = SAp(0) + o, (17)

where the matrix S and the vector o can be obtained from the
eigenvectors e;, and the coefficients s; and o;:

N N
S = Zsiei, o= Zm&w (18)
i=1 i=1

Recall that p (0) is a zero-mean Gaussian variable with covariance
A~ Therefore the covariance matrix ¥ and the mean g of the
Gaussian random variable x (T) are

Y= (SA) A (SA)T = 545", p=o. (19)

Multiplying with prior Gaussian. In practice, our second order
approximation (Equation (11)) can be inaccurate when the proposal
is far from the current state, or if there are discontinuities such as
visibility changes. To compensate for this, we introduce a prior
Gaussian distribution with a zero mean and isotropic variance using
a user specified constant o2, and multiply the PDF of it with the PDF
of the Gaussian random variable (7T'), to effectively place a limit
on the maximum variance (which corresponds to the movement of
the path in path space).

Another way to think about the prior is that it acts as a regularization
term that penalizes high variance. If o2 is high, then the change
of the light path would be large, and the acceptance rate would be
lower. On the other hand, if o is low, then the change of the light
path is small, and the acceptance rate would be higher. We show the
effects of different o2 in Figure 5. In our current implementation we
manually set o to achieve a certain acceptance rate (50% to 70%),
but it may be possible to automatically adjust the parameter using
adaptive MCMC [Andrieu and Thoms 2008]. The final mean p*
and covariance ©.* are

-1
T = <Z’1 + %) L pt =321, (20)

Computing acceptance probability In order to apply the
Metropolis-Hastings rule (Equation (2)) given a current position
x, we generate a new proposal position y from a Gaussian variable
with mean p) and covariance matrix X computed using Equa-
tion (20). Then we compute the mean p, and covariance matrix X7
at the proposal position. The acceptance probability (Equation (3))
is computed using the PDFs of the Gaussians:

&
:mm(l w>

where @, (y — x) is the Gaussian PDF with covariance X} and
mean g, computed at (Equation (20)). Specifically, if we define
z =1y — x,itis:

_N * 1 1 * * — *
b (2) = (2m) ¥ 220 e (- 2 =)02 (2 -)
(22)
&, (—z) is defined similarly with covariance and mean computed
aty.

Setting parameters A and 7. A remaining question is how to
choose the inverse mass matrix A and simulation time 7'. Previous
work in Hamiltonian Monte Carlo suggests setting A to the covari-
ance of the target function [Neal 2010; Girolami and Calderhead
2011]. As an example, consider a target function f (x) that is a
Gaussian distribution with covariance > . If we ignore multipli-
cation with the prior in Section 4.3, setting A to the covariance of
the target function, and setting 7" = /2 will result in a Gaussian
]mutation (Equation (19)) that precisely matches the target function.

'In this case, the Hessian H for log f will simply be —E;l, and a =
AH will be a negative identity matrix. Therefore, we consider the a« < 0
case in Equation (16), where s = 1 for T = m/2, and S is the identity
matrix. Therefore, the covariance matrix ¥ from Equation (19) is given
simply by A, leading to a Gaussian distribution with covariance 3 ¢, which
is exactly the target function. This justifies setting A to the covariance of the
target function, and setting 7' = 7 /2.

.

(a) HMC, 128 proposals
no Markov chain running no Markov chain running
accept rate 94.53% accept rate 75.78%
100 steps 1 step
12929 function evaluations 129 function evaluations

(b) ours, 128 proposals

(¢) HMC, 128 MCMC states (d) ours, 128 MCMC states (e) ours, 1024 MCMC states
accept rate 92.97%
100 steps 1 step 1 step

12929 function evaluations

accept rate 94.53% accept rate 92.29%

129 function evaluations
(~ 100 times fewer)

1025 function evaluations
(~ 12.5 times fewer)

(~ 100 times fewer)

Figure 6: We compare the sample distribution of the original HMC method and our method using the zoomed out slices from Figures 2 (g)
and (h). The left box shows the “proposals” drawn from the current sample position, without running the Markov chain, and the right box
shows the actual Markov chain states. While the original HMC is able to generate proposals with high acceptance probability, and over longer
trajectories (compare (a) to (b) and (c) to (d)), each proposal in the original HMC requires many steps to compute (100 steps in this case), and
each step involves costly ray tracing, shading, and derivative computation. Our method can achieve much better space coverage using a single
step (as opposed to the 100 steps in the original HMC), and requires an order of magnitude fewer function evaluations (e).

(d) Ours,
isotropic proposal isotropic proposal ~H 2McC proposal

(a) TORUS (b) Kelemen et al., (c) Ours,

Figure 7: We show a comparison between our new parameterization
and Kelemen et al.’s parameterization on the TORUS scene with a
diffuse torus inside a glossy glass cube lit by a point light. The
left image is computed using 5000 samples per pixel using our
method, and the three insets are computed with 256 samples per
pixel. The original parameterization incurs correlation between
screen space and the outgoing sample directions on the glass and
the torus, creating streaks on the torus. Our new parameterization
greatly reduces this correlation. Our Hessian-Hamiltonian proposal
Sfurther improves the sampling efficiency dramatically.

In general, the target function need not be a Gaussian and a global
covariance ¥y may not be sufficient to describe the function. We
approximate the covariance locally using the fact that we have the
Hessian H of the log of the function. If the target function is a
Gaussian, the negative inverse of the Hessian —H ~* would exactly
be the covariance of the target function. It would be tempting to
directly set A to —H ", but the covariance matrix of a Gaussian
distribution is required to be positive semidefinite (all eigenvalues
need to be positive), and —H ~! is not necessarily positive definite
in general. We approximate the local covariance of the function by
substituting the eigenvalues in —H ~* by their absolute values, and
set A to the approximated local covariance:

1
A= A
> {l

where el and A\ are the i-th eigenvector and eigenvalue of H.
Finally, we set T" to 7, as in the Gaussian example above.

1H|e{f ifAF £0

otherwise,

(23)

The construction of A and T also simplifies the implementation,
since A and H share the same set of eigenvectors and A’s eigenval-
ues are the inverse of the absolute value of H’s eigenvalues or zero.
The eigenvalues A; of matrix AH would then be either —1, 1, or
0, depending on the sign of the eigenvalue of H. The magnitudes

of the eigenvalues in the Hessian H (and hence A) are still taken
into consideration when sampling from the momentum using the
inverse mass matrix A. We show the pseudo-code of our algorithm
in Appendix A, which outputs the final mean g™ and covariance ¥*
given the gradient G, Hessian H, and prior 2.

Finally, we compare the proposals and the Markov chain of original
HMC with a leapfrog integrator, and our Hessian-HMC method
in Figure 6, using a 2D slice in the RING scene (Figure 2). We
use a step size of 0.0005 with 100 steps for the leapfrog numerical
integrator in HMC, and we set the prior Gaussian o = 0.01 for
our method. The target acceptance rate is set higher because the
dimensionality of the function is low [Neal 2010]. Although original
HMC is able to use longer trajectories to explore the space more
thoroughly with the same number of samples, a single sample in
HMC requires 100 steps of ray tracing, shading and derivatives
computation. Choosing a bigger step size or smaller step number
for HMC may result in energy loss or inferior space exploration
efficiency, and this parameter of original HMC is notoriously hard
to tune. Our H? M C method can explore the space better using an
order of magnitude fewer function evaluations (Figure 6(e)).

5 Implementation

‘We implement our method in a stand-alone MCMC renderer with the
Embree ray tracing engine [Wald et al. 2014]. We use the automatic
differentiation library CppAD [Bell 2003-2015] and CppADCode-
Gen [Leal 2011-2015] to generate the code for the derivatives of the
path throughput function. The renderer supports the Phong BRDF,
the microfacet refraction model [Walter et al. 2007], point and area
light sources, and linear object motion. Each sample in the Markov
chain represents a single light path that connects the light to the
camera. As in most previous MCMC rendering methods, we em-
ploy multiple mutation strategies to better cover different types of
light paths. Specifically, we adopt three different types of mutation
strategies: a multiplexed large step mutation [Kelemen et al. 2002;
Hachisuka et al. 2014], a novel modified small step perturbation,
and a lens perturbation. The large step mutation is responsible for
making large jumps between different disconnected components of
light paths, the small step perturbation is responsible for making a
small change to all dimensions of the function, and finally the lens
perturbation changes only part of the light path to alleviate difficult
visibility issues. We apply the H?MC sampling on the small step

and the lens perturbation to explore the local structure of the path
throughput function. In the rest of this section, we address some
technical details of the implementation.

Multiplexed large step mutation. To ensure the ergodicity of
the Markov chain, that is, to ensure we have a strictly positive
probability to sample all light paths with non-zero contribution, we
include a large step mutation to generate a proposal light path that
is completely independent of the current sample. Furthermore, the
generation of the proposal is multiplexed in the same spirit as the
Multiplexed Metropolis Light Transport [Hachisuka et al. 2014].
Specifically, a light path is generated by first choosing a path length
(the distribution is determined during the initialization), then we
uniformly sample the length of the camera subpath. The camera
subpath and the light subpath are sampled correspondingly and their
endpoints are connected. The multiple importance sampling weight
is computed as usual and the path contribution is scaled by the
number of techniques. Since the generation of each such path is
independent, H>M C sampling is not applied in this mutation.

H? small step perturbation. We adopt a modified version of the
small step perturbation [Kelemen et al. 2002] as the main component
to explore the path throughput function locally. In Kelemen et al.’s
work, the light paths are represented as the random numbers that are
used to generate them. The perturbation is done by making small
changes to the random numbers, and results in a new light path. We
make two modifications to the parameterization.

First, we classify the surfaces into specular and non-specular by
applying a user-defined threshold on the roughness. If the surface is
near-specular, the outgoing directions are parameterized using the
random numbers. On the other hand, if the surface is non-specular,
the outgoing directions are parameterized using the global direc-
tions expressed in absolute spherical coordinates. We found that
this change improves sampling efficiency because the correlation
between the dimensions is reduced. Kelemen’s parameterization
handles specular surfaces well, because importance sampling cap-
tures the peak of the target function well. On the other hand, the
local parameterization introduces extra correlation between dimen-
sions, because the outgoing direction depends on the normal of the
surface, and the normal depends on the previous outgoing direction.
The parameterization change is beneficial because H2M C captures
the linear correlation between dimensions, while the parameteriza-
tion change is non-linear. We show a comparison of the original
parameterization with the new one in Figure 7.

Second, if the light path hits a light source without next event esti-
mation (that is, no explicit connection is made), we substitute the
parameterization of the last outgoing direction, to the position on
the light source, so that the perturbation is more likely to hit the
light source. We assume a pinhole camera in our implementation,
but the second change can also apply in the case when the light
path starts from the light source and hits the camera lens without
explicit connection. The new parameterization represents the sample
position « in the F*> MC' sampling.

The time dimension is treated the same as other dimensions. The
generality of H?MC' sampling makes it agnostic to the underlying
representation. This enables us to detect the correlation between
time and other dimensions, which was not considered in previous
MCMC rendering methods.

H? lens perturbation. Consider light paths involving small and
flat surfaces. If we mutate the whole path, chances are high that we
will miss the surfaces and result in zero contribution. A better strat-
egy for these light paths is to mutate only a subset of the full path,

REF H*MC

MEMLT HSLT MMLT
Figure 8: BATHROOM: An equal-time (10 minutes) comparison on
the bathroom scene with multiple glossy reflections lit by a distant
area light. The top image is generated by our method in 10 minutes.
Our method achieves less noisy results on highly curved glossy
surfaces and the caustics because we can adapt to the curvatures of
the surfaces using second-order derivatives.

H°MC | MMLT | MEMLT | HSLT

BATHROOM 610 1288 600 331
KITCHEN 5169 12453 4749 3319
BALLS 2943 8554 2961 N/A
CARS 1576 5361 1422 N/A

Table 1: Sample count per pixel of each method
for the equal-time comparisons.

and keep the rest of the vertices fixed. We implement the lens pertur-
bation in the original Metropolis Light Transport algorithm [Veach
and Guibas 1997], which mutates only the lens subpath. For lens
perturbation, the sample position « in the H>M C' sampling is the
two dimensional image coordinate.

6 Results and Discussion

We compare against three other MCMC rendering methods: Multi-
plexed MLT (MMLT) [Hachisuka et al. 2014], Manifold Exploration
MLT (MEMLT) [Jakob and Marschner 2012], and the improved
Half-vector Space Light Transport (HSLT) [Hanika et al. 2015].
MMLT is a general rendering algorithm that does not assume any
particular lighting effect, but its isotropic mutation makes it ineffi-
cient on difficult light paths such as highly-glossy transports. We
compare to MMLT to show the efficiency of the anisotropic proposal
sampling. MEMLT and HSLT are two rendering algorithms dedi-
cated to specular and glossy transport by using first-order derivatives
of the half-vectors. They can efficiently resolve difficult specular
light paths, but often produce noisy results on highly-curved surfaces.

Figure 9: We visualize the screen space slice of the contribu-
tion of three different light paths and our Gaussian approximation
N (p*,X%) in the BATHROOM scene. The center row of the insets
shows the contribution of perturbing the light path in the screen
space. The left column shows a 4 bounce glossy reflection light path,
the center column shows a 3 bounce diffuse reflection light path, and
the right column shows a 3 bounce caustic light path caused by the
metal towel ring. Glossy/specular transport results in sparse and
anisotropic contributions, which are hard to sample using isotropic
mutations. The bottom row shows our Gaussian approximation pro-
Jjected onto the screen space. The approximation matches the sharp
contribution function and falls back to isotropic sampling when the
contribution is smooth. Note that our method is anisotropic in all
sampling dimensions, and we only show the screen space slices for
visualization purposes.

Furthermore, since they assume a specific lighting scenario, they
cannot resolve difficult moving caustics, and usually result in ghost-
ing artifacts (Figures 1 and 11). We did not compare to HSLT on the
scenes with motion blur because their implementation does not allow
it. We render four scenes — BATHROOM (1280 x 720), KITCHEN
(1024 x 576), BALLS (768 x 576), CARS (768 x 576) — with dif-
ferent lighting, material, and geometry configurations (Figure 1 and
Figures 8 to 11).

For MMLT we use our own implementation, for MEMLT and HSLT
we use the implementation in the Mitsuba [Jakob 2010] renderer.
HSLT is used with the lens perturbation because in our experiments
it results in better images. The comparisons are equal-time using an
Intel Core 17-4770 at 3.40GHz using 4 cores. The maximum path
length is set to 7. References are rendered using the PSSMLT [Kele-
men et al. 2002] implementation in Mitsuba and rendered for 2-3
days on a 64 core machine, except that the reference for the CARS
is rendered using our method for roughly 15 hours on the 4 core
machine (PSSMLT did not converge in 2-3 days computation). We
show the sample count per pixel of each method in each scene in
Table 1. In general our method is 2-3.5 times slower per sample than
MMLT because of the derivatives and Gaussian computation, and
is about the same speed as MEMLT. HSLT is slower than MEMLT

REF H?MC MEMLT HSLT MMLT

Figure 10: KITCHEN: An equal-time (1 hour) comparison on the
kitchen scene with complex material and geometry configuration lit
by four area lights right above the table. The top image is generated
by our method in an hour. This is a challenging scene and the
reference rendered by PSSMLT is still slightly noisy after 2 days of
computation on a 64 core machine. Our method excels at following
the small features of the image such as the fork and the knife on
the table, or the edges on the chair. It is also good at following the
multiple glossy reflections on the highly curved surfaces such as the

reflection on the flask.

because it works on a higher-dimensional manifold.

Bathroom Figure 8 shows an equal-time (10 minutes) comparison
on the bathroom scene with multiple glossy-to-glossy transports
lit by a distant area light. For this particular scene, only indirect
illumination is shown to highlight the differences between the al-
gorithms. MMLT generates noisy results because of their isotropic
mutation distribution. MEMLT and HSLT do generally well, but
produce noisy results on high curvature surfaces because they use
a first-order approximation on the surface. Our method is able to
capture the local structure of the function and generates accurate
results.

To demonstrate the anisotropic proposal distribution of our method,
we visualize the screen space slice of the contribution of some light
paths and the slice of our Gaussian approximation in Figure 9. Our
method is able to adapt to the sparse and sharp path contribution
function, and fall back to isotropic sampling when the contribution
function is smooth. MEMLT and HSLT often fail to capture small
screen space features, because they isotropically sample some di-
mensions first, and such sampling often misses the feature. Note that
our method adapts to all dimensions, and we only show the screen
space slice for the sake of visualization.

Kitchen. Figure 10 shows an equal-time (1 hour) comparison on
the kitchen scene with complex materials and a difficult geometry

S S EE

MEMLT MMLT

Figure 11: BALLS: 30 minute rendering of the balls scene, which
consists of three moving near-specular glass balls lit by a point light.
The left image is generated by our method in 30 minutes. The moving
balls show complex patterns with a combination of reflection from
the room and the resulting caustics on the table. Neither MMLT nor
MEMLT are able to efficiently resolve the moving features within the
given time budget. Our method is able to closely follow the specular
highlights and caustics in the glass because it detects the correlation
between the time domain and path-space.

configuration lit by four area lights close to the table. This is a
challenging scene and the reference rendered by PSSMLT is still
slightly noisy after 2 days of computation on a 64 core machine.
MMLT produces spiky noise because some glossy-to-glossy light
paths have small and high-contribution regions. MEMLT and HSLT
generate noisy results on small and highly curved surfaces. Our
method is able to follow the small image features closely, producing
smoother results.

In general, light paths involving highly curved surfaces can be trou-
blesome for MEMLT and HSLT, which only utilize first derivatives.
Both of them need to start from an initial subpath, then iteratively
converge to the new light path on the manifold. The light paths
involving curved surfaces often have narrow contribution areas, and
are highly non-linear. It is likely that the initial subpath will miss
the highlight entirely, making it impossible to converge to a new
light path. Even if the initial subpath hits the highlight, it could take
many iterations to converge due to the non-linearity. In contrast, the
second derivatives along with the Hamiltonian dynamics enable us
to generate the proposal path directly with respect to the local shape
of the function, avoiding the convergence issue.

Balls. Figure 11 shows a 30 minute rendering of the balls scene,
which consists of three moving near-specular glass balls lit by a
point light. MMLT is unable to resolve the difficult specular-diffuse-
specular paths inside the moving balls and the caustics on the table.
While MEMLT excels at resolving the specular light paths given
the time fixed, it relies on seeding to sample the time dimension,
which causes the ghosting artifacts on the balls. Our method is able
to capture correlation between the time and the path-space, so that
it can efficiently sample the difficult moving caustics and specular
highlights.

Cars. Figure 1 shows a 20 minute rendering of the cars scene, with
a static car and a moving car lit by an area light. This is a challenging
scene because of the hard-to-find specular-diffuse-specular (SDS)
light paths between the car interior and the near-specular window.
MMLT has a hard time finding the specular light paths, and is often
trapped in local modes, producing streaks on the image. MEMLT is
able to resolve the static SDS paths more efficiently, but produces
ghosting artifacts since it does not move in the time dimension. Our
method moves in all dimensions and generates smooth results.

6.1 Limitations

Integrating our method into an existing renderer requires some work,
because we need to automatically differentiate the shaders. How-
ever, once automatic differentiation has been set up, it is easier to
integrate other distributed effects such as motion blur. Automatic
differentiation could also be helpful for the shaders/integrators that
require the derivatives of the light path (e.g. ray differentials).

As with most MCMC rendering algorithms, high frequency visibility
changes can significantly lower the efficiency. Our Gaussian prior
reduces this effect but tiny geometry can still cause problems. In
addition to visibility changes, there can also be some pathological
cases where the path contribution function is extremely noisy. For
example, multiple-bounce reflections involving glossy surfaces with
high frequency displacement maps. In these cases the derivatives
become unreliable, and our method might start to produce corre-
lated noise or have low acceptance rate. We also observe that light
transport integration involves both global and local exploration chal-
lenges. We need to globally find high-contribution regions, and then
locally sample them despite their narrowness. Our method dramati-
cally improves local sampling, but it still needs seed paths that are
globally reasonably well distributed. Finally, since the derivatives
and covariance computation incurs extra overhead, for relatively
simple scenes and BSDFs where ray casting is cheap and isotropic
mutation is sufficient, the adaptiveness of our method may not be
worth the cost.

7 Conclusions

We presented a novel Hessian-based Hamiltonian Monte Carlo
method and applied it to light transport simulation. By introduc-
ing Hamiltonian dynamics, we are able to sample from the local
quadratic representation that does not define a distribution. Our
method can capture the local correlation of the path throughput func-
tion, making it suitable for rendering difficult lighting scenarios such
as the combination of glossy-to-glossy transport and motion blur.
We anticipate that the method’s generality will make it possible to
render a wider variety of effects such as retroreflective materials,
spectral effects, and participating media.

Acknowledgements

We are grateful to the anonymous reviewers for their valuable com-
ments. This work is funded by NSF grants 1451830 and Academy
of Finland grant 277833. Wenzel Jakob was supported by an
ETH/Marie Curie fellowship.

References

ANDRIEU, C., AND THOMS, J. 2008. A tutorial on adaptive
MCMC. Statistics and Computing 18, 4, 343-373.

BELCOUR, L., SOLER, C., SUBR, K., HOLZSCHUCH, N., AND
DURAND, F. 2013. 5D covariance tracing for efficient defocus
and motion blur. ACM Trans. Graph. 32, 3, 31.

BELL, B., 2003-2015. CppAD: A package for differentiation of
C++ algorithms. http://www.coin-or.org/CppAD/.

BETANCOURT, M. 2013. A general metric for riemannian manifold
hamiltonian monte carlo. In GSI 2013, 327-334.

CHEN, M., AND ARVO, J. 2000. Theory and application of specular
path perturbation. ACM Trans. Graph. 19, 4, 246-278.

http://www.coin-or.org/CppAD/

CLINE, D., TALBOT, J., AND EGBERT, P. 2005. Energy redistribu-
tion path tracing. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3
(July), 1186-1195.

DUANE, S., KENNEDY, A. D., PENDLETON, B. J., AND ROWETH,
D. 1987. Hybrid monte carlo. Physics Letters B 195, 2,216 —
222.

GIROLAMI, M., AND CALDERHEAD, B. 2011. Riemann manifold
langevin and hamiltonian monte carlo methods. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) (With
Discussion) 73, 123 — 214.

GRIEWANK, A., AND WALTHER, A. 2008. Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentiation, sec-
ond ed. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRODER,
P. 2003. Discrete shells. In SCA 2003.

GRITZ, L., STEIN, C., KULLA, C., AND CONTY, A. 2010. Open
shading language. In SIGGRAPH 2010 Talks, 33:1-33:1.

GUENTER, B. K. 2007. Efficient symbolic differentiation for
graphics applications. ACM Trans. Graph. (Proc. SIGGRAPH)
26, 3, 108.

HACHISUKA, T., KAPLANYAN, A. S., AND DACHSBACHER, C.
2014. Multiplexed metropolis light transport. ACM Trans. Graph.
(Proc. SIGGRAPH) 33, 4, 100.

HANIKA, J., KAPLANYAN, A., AND DACHSBACHER, C. 2015.
Improved half vector space light transport. Computer Graphics
Forum (Proc. EGSR) 34, 4, 65-74.

HASTINGS, W. K. 1970. Monte carlo sampling methods using
markov chains and their applications. Biometrika 57, 1, 97-109.

HoOLzZSCHUCH, N., AND SILLION, F. X. 1998. An exhaustive
error-bounding algorithm for hierarchical radiosity. Computer
Graphics Forum 17,4, 197-218.

IGEHY, H. 1999. Tracing ray differentials. SIGGRAPH 1999,
179-186.

JAKOB, W., AND MARSCHNER, S. 2012. Manifold exploration: a
markov chain monte carlo technique for rendering scenes with dif-
ficult specular transport. ACM Trans. Graph. (Proc. SIGGRAPH)
31,4, 58.

JAKOB, W., 2010.
renderer.org.

Mitsuba renderer. http://www.mitsuba-

KAPLANYAN, A. S., HANIKA, J., AND DACHSBACHER, C. 2014.
The natural-constraint representation of the path space for ef-
ficient light transport simulation. ACM Trans. Graph. (Proc.
SIGGRAPH) 33,4, 102.

KELEMEN, C., SZIRMAY-KALOS, L., ANTAL, G., AND CSONKA,
F. 2002. A simple and robust mutation strategy for the metropolis
light transport algorithm. Comput. Graph. Forum (Proc. Euro-
graphics) 21, 3, 531-540.

KETTUNEN, M., MANZI, M., AITTALA, M., LEHTINEN, J., DU-
RAND, F., AND ZWICKER, M. 2015. Gradient-domain path
tracing. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4 (July),
123.

KITAOKA, S., KITAMURA, Y., AND KISHINO, F. 2009. Replica
exchange light transport. Computer Graphics Forum 28, 8 (Dec.),
2330-2342.

LAI Y., FAN, S., CHENNEY, S., AND DYER, C. 2007. Pho-
torealistic image rendering with population monte carlo energy
redistribution. Rendering Techniques (Proc. EGSR), 287-295.

Lar, Y.-C., , Liu, F., AND DYER, C. 2009. Physically-based
animation rendering with markov chain monte carlo. University
of Wisconsin - Madison Computer Sciences Department, UW-CS-
TR-1653.

LEAL, J. R.,2011-2015. CppADCodeGen. https://github.
com/joaoleal/CppADCodeGen/.

LEHTINEN, J., KARRAS, T., LAINE, S., AITTALA, M., DURAND,
F., AND AILA, T. 2013. Gradient-domain metropolis light
transport. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4, 95.

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N.,
TELLER, A. H., AND TELLER, E. 1953. Equation of state
calculations by fast computing machines. J. Chem. Phys. 21, 6,
1087-1092.

NEAL, R. M. 2010. MCMC using Hamiltonian dynamics. Hand-
book of Markov Chain Monte Carlo 54, 113-162.

P1pONI, D. 2004. Automatic differentiation, C++ templates, and
photogrammetry. Journal of graphics, GPU, and game tools 9, 4,
41-55.

RAMAMOORTHI, R., MAHAJAN, D., AND BELHUMEUR, P. 2007.
A first-order analysis of lighting, shading, and shadows. ACM
Trans. Graph. 26, 1, 2.

RITCHIE, D., LIN, S., GOODMAN, N. D., AND HANRAHAN, P.
2015. Generating design suggestions under tight co.traint.ith
gradient-based probabilistic programming. Comput. Graph. Fo-
rum (Proc. Eurographics) 34, 2, 515-526.

ROBERTS, G. O., AND TWEEDIE, R. L. 1996. Exponential conver-
gence of langevin distributions and their discrete approximations.
Bernoulli 2, 4, 341-363.

SCHWARZHAUPT, J., JENSEN, H. W., AND JAROSZ, W. 2012.
Practical hessian-based error control for irradiance caching. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6, 193.

SHINYA, M., TAKAHASHI, T., AND NAITO, S. 1987. Principles
and applications of pencil tracing. Comput. Graph. 21, 4, 45-54.

SUYKENS, F., AND WILLEMS, Y. D. 2001. Path differentials
and applications. In Eurographics Workshop on Rendering Tech-
niques, 257-268.

VEACH, E., AND GUIBAS, L. J. 1995. Optimally combining
sampling techniques for monte carlo rendering. SIGGRAPH
1995, 419-428.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
SIGGRAPH 1997, 65-76.

VEACH, E. 1998. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford, CA, USA.

WALD, I., WOOP, S., BENTHIN, C., JOHNSON, G. S., AND ERNST,
M. 2014. Embree: A kernel framework for efficient cpu ray
tracing. ACM Trans. Graph. 33, 4, 143.

WALTER, B., MARSCHNER, S. R., LI, H., AND TORRANCE, K. E.
2007. Microfacet models for refraction through rough surfaces.
In Rendering Techniques (Proc. EGSR), 195-206.

WARD, G., AND HECKBERT, P. 1992. Irradiance gradients. In
Eurographics Rendering Workshop, 85-98.

https://github.com/joaoleal/CppADCodeGen/
https://github.com/joaoleal/CppADCodeGen/

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A
ray tracing solution for diffuse interreflection. SIGGRAPH 1988,
85-92.

A Pseudo-code for the algorithm

We show the pseudo-code for our algorithm. Given the gradient
G and the Hessian H of the log target function log f(z), and a
user parameter o2, our method outputs an anisotropic Gaussian
distribution X", u*. Note that we simplify the algorithm using the
fact that the inverse mass matrix A and H have the same set of
eigenvectors.

1: procedure H2MC(G, H, %) © gradient, Hessian, and prior

2: N < dimension of the target function

3: T=7% > Simulation time
4: for i <— 1, N do > Eigendecomposition of H
5: el « i-th eigenvector of H

6: AT i-th eigenvalue of H

7: end for

8: A=0nNxN > Initialize with zero matrix
9: for i < 1, N do > Construction of A
10: ef1 — ef{
11: if ‘/\f{ ‘ > e then > € is set to a small number.
12: M |A11H|

13: else

14: M0

15: end if

16: A=A+)\lted

17: end for
18: for i < 1, N do > Eigendecomposition of the matrix AH

19: e; +— ef{
20: if |)\ZH| > € then
A\H
21: i i > A = |A1H|
22: else
23: i <0
24: end if

25: end for
26: S =0nxN

27: o = 0N><1

28: fori < 1, N do > Scales and offsets (Equation (16))

29: a— A > AH'’s i-th eigenvalue

30: B+ /\?GTei > Projection of AG on e;

31: if \; > 0 then

32: Si < exp(\/ET)Q—;;p(—\/ET)

33: 0; + £ (exp (v/aT) + exp (—/aT) — 1)

34: else 1f)\ < 0 then

35: \/7 sin (w/—aT)

36: 0; « 8 ((\/—aT) — 1)

37: else

38: s; T

39: 0 + -2

40: end if

41: S =5+se; > Equation (18)

42: o= o0+ o€,

43: end for

44: Y =5A48T > Equation (19)

45: Hn=o0

46: ¥ = (Z_l + ﬁ)fl > Prior multiplication
(Equation (20))

47: u=x'Su
48: return %, p*
49: end procedure

