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Abstract The objective of a rendering algorithm is to compute a photograph of a
simulated reality, which entails finding all the paths along which light can flow from a
set of light sources to the camera. The purpose of this article is to present a high-level
overview of the underlying physics and analyze how this leads to a high-dimensional
integration problem that is typically handled using Monte Carlo methods. Following
this, we survey recent work on path space Markov Chain Monte Carlo (MCMC)
methods that compute the resulting integrals using proposal distributions defined on
sets of light paths.

1 Introduction

The central goal of light transport algorithms in computer graphics is the generation
of renderings, two-dimensional images that depict a simulated environment as if
photographed by a virtual camera. Driven by the increasing demand for photorealism,
computer graphics is currently undergoing a substantial transition to physics-based
rendering techniques that compute such images while accurately accounting for the
interaction of light and matter.

These methods require a detailed model of the scene including the shape and
optical properties of all objects including light sources; the final rendering is then
generated by a simulation of the relevant physical laws, specifically transport and
scattering, i.e., the propagation of light and its interaction with the materials that
comprise the objects. In this article, we present a high-level overview of the underly-
ing physics and analyze how this leads to a high-dimensional integration problem
that is typically handled using Monte Carlo methods.

Section 2 begins with a discussion of the geometric optics framework used in
computer graphics. After defining the necessary notation and physical units, we
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state the energy balance equation that characterizes the interaction of light and
matter. Section 3 presents a simple recursive Monte Carlo estimator that solves
this equation, though computation time can be prohibitive if accurate solutions are
desired. Section 4 introduces path space integration, which offers a clearer view
of the underlying light transport problem. This leads to a large class of different
estimators that can be combined to improve convergence. Section 5 introduces
MCMC methods in rendering. Section 6 covers an MCMC method that explores a
lower-dimensional manifold of light paths, and Section 7 discusses extensions to
cases involving inter-reflection between glossy objects. Section 8 concludes with a
discussion of limitations and unsolved problems.

This article is by no means a comprehensive treatment of rendering; the selection
of topics is entirely due to the author’s personal preference. It is intended that the
discussion will be helpful to readers who are interested in obtaining an understanding
of recent work on path-space methods and applications of MCMC methods in
rendering.

2 Geometric Optics and Light Transport on Surfaces

Light transport simulations in computer graphics are generally conducted using a
simplified variant of geometric optics. In this framework, light moves along a straight
line until an interaction (i.e., a scattering event) occurs, which involves a change
of direction and potentially some absorption. The wave-like nature of light is not
simulated, which leads to a simpler computation and is an excellent approximation
in general (the wavelength of visible light is minuscule compared to the sizes of
everyday objects). Light is also assumed to be incoherent and unpolarized, and
although it moves at a finite speed, this motion is not modeled explicitly. More
complex theories without these assumptions are available but ultimately not needed
since the phenomena described by them are in most cases too subtle to be observed
by humans. For the sake of simplicity, we only discuss monochromatic rendering
in this article; the generalization to the full color spectrum poses no fundamental
difficulties.

In the following sections, we review relevant background material, starting with
the standard light transport model used in computer graphics and leading up to the
path space framework proposed by Veach [28].

In geometric optics, light is usually quantified using radiance, which has units of
W · sr−1 ·m−2. Given a point x ∈R3 and a direction ω ∈ S2, the radiance L(x,ω) is a
density function that describes how much illumination flows through the point, in this
direction. Radiance can be measured by registering the amount of energy arriving on
a small surface patch dA at x that is perpendicular to ω and sensitive to a small cone
of directions dω around ω , and then letting the surface and solid angle tend to zero.
For a thorough review of radiance and many related radiometric quantities, we refer
the reader to Preisendorfer [25].
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An important property of radiance is that it remains invariant along rays when
there are no obstructions (e.g., in vacuum),

L(x,ω) = L(x+ tω, ω), t ∈ [0, tobstr).

Due to this property, a complete model of a virtual environment can be obtained
simply by specifying how L behaves in places where an obstruction interacts with
the illumination, i.e., at the boundaries of objects or inside turbid substances like fog
or milk. In this article, we only focus on the boundary case for simplicity. For a more
detailed discussion including volumetric scattering, we refer to [10].

We assume that the scene to be rendered is constructed from a set of surfaces
that all lie inside a bounded domain Ω ⊆ R3. The union of these surfaces is denoted
M ⊂Ω and assumed to be a differentiable manifold, i.e. is parameterized by a set
of charts with differentiable transition maps.

Fig. 1: Limits of the radiance
function L from above and below

Furthermore, let N : M → S2 denote the Gauss map,
which maps surface positions to normal directions on the
unit sphere.

Because boundaries of objects introduce discontinu-
ities in the radiance function L, we must take one-sided
limits to distinguish between the exterior radiance func-
tion L+(x,ω) and the interior radiance function L−(x,ω)
at surface locations x ∈M as determined by the normal
N(x) (Figure 1). Based on these limits, intuitive incident and outgoing radiance
functions can then be defined as

Li(x,ω) :=

{
L+(x,−ω), ω ·N(x)> 0
L−(x,−ω), ω ·N(x)< 0

and

Lo(x,ω) :=

{
L+(x,ω), ω ·N(x)> 0
L−(x,ω), ω ·N(x)< 0

.

With the help of these definitions, we can introduce the surface energy balance
equation that describes the relation between the incident and outgoing radiance based
on the material properties at x:

Lo(x,ω) =
∫

S2
Li(x,ω ′) f (x,ω ′→ω)

∣∣ω ′ ·N(x)
∣∣ dω

′+Le(x,ω), x ∈M . (1)

The integration domain S2 is the unit sphere and f is the bidirectional scattering dis-
tribution function (BSDF) of the surface, which characterizes the surface’s response
to illumination from different directions. Given illumination reaching a point x from
a direction ω ′, the BSDF expresses how much of this illumination is scattered into
the direction ω . For a detailed definition of the concept of a BSDF as well as other
types of scattering functions, we refer the reader to Nicodemus [22]. The function
Le(x,ω) is the source term which specifies how much light is emitted from position
x into direction ω; it is zero when the position x is not located on a light source.
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Fig. 2: Illustration of the energy balance equation (1) on surfaces. Here, it is used
to compute the pixel color of the surface location highlighted in white (only the top
hemisphere is shown in the figure).

Figure 2 visualizes the different terms in Equation (1) over the top hemisphere.
The example shows a computation of the radiance traveling from the surface location
marked with a white dot towards the camera. The first term is an integral over the
incident radiance as seen from the surface location. The integral also contains the
BSDF and a cosine foreshortening term which models the effect that a beam of light
arriving at a grazing angle spreads out over a larger region on the receiving surface
and thus deposits less energy per unit area. The “ceiling” of the scene is made of
rough metal; its reflectance function effectively singles out a small portion of the
incident illumination, which leads to a fairly concentrated reflection compared to
the other visible surfaces. The emission term is zero, since the highlighted surface
position is not located on a light source.

Considerable research has been conducted on characterizing the reflectance prop-
erties of different materials, and these works have proposed a wide range of BSDF
functions f that reproduce their appearance in renderings. Figure 3 shows several
commonly used BSDF models, along with the resulting material appearance. The
illustrations left of the renderings show polar plots of the BSDF f (ω ′→ω) where
the surface receives illumination from a fixed incident direction ω ′ highlighted in
red. The primary set of reflected directions is shown in blue, and the transmitted
directions (if any) are shown in green.

Specular materials shown in the top row are characterized by having a “degenerate”
BSDF f that is described by a Dirac delta distribution. For instance, a mirror reflects
light arriving from ω into only a single direction ω ′ = 2N(x)(ω ·N(x))−ω . In
comparison, rough materials usually have a smooth function f . BSDFs based on
microfacet theory [27, 4, 32] are a popular choice in particular—they model the
interaction of light with random surfaces composed of tiny microscopic facets that
are oriented according to a statistical distribution. Integration over this distribution
then leads to simple analytic expressions that describe the expected reflection and
refraction properties at a macroscopic scale. In this article, we assume that the
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Fig. 3: An overview of common material types. The left side of each example shows
a 2D illustration of the underlying scattering process for light arriving from the
direction highlighted in red. The right side shows a corresponding rendering of a
material test object.

BSDFs are provided as part of the input scene description and will not discuss their
definitions in detail.

3 Path Tracing

We first discuss how Equation (1) can be solved using Monte Carlo integration,
which leads to a simple method known as Path Tracing [12]. For this, it will be
convenient to establish some further notation: we define the distance to the next
surface encountered by the ray (x,ω) ∈ R3×S2 as

dM (x,ω) := inf{d > 0 | x+dω ∈M }

where inf /0 = ∞. Based on this distance, we can define a ray-casting function r:

r(x,ω) := x+dM (x,ω)ω. (2)

Due to the preservation of radiance along unoccluded rays, the ray-casting function
can be used to relate the quantities Li and Lo:

Li(x,ω) = Lo(r(x,ω),−ω).
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Algorithm 1 Pseudocode of a simple Path Tracer

1 function L̂o(x,ω)
2 Return zero with probability α ∈ (0,1).
3 Sample a direction ω ′ proportional to f (x,ω ′→ω),

let the factor of proportionality be denoted as fprop.
4 Set x′ = r(x,ω ′)
5 Return 1

1−α

(
Le(x,ω)+ fprop L̂o(x′,−ω ′)

)
.

In other words, to find the incident radiance along a ray (x,ω), we must only
determine the nearest surface visible in this direction and evaluate its outgoing
radiance into the opposite direction. Using this relation, we can eliminate Li from the
energy balance equation (1):

Lo(x,ω) =
∫

S2
Lo(r(x,ω ′),−ω

′) f (x,ω ′→ω)
∣∣ω ′ ·N(x)

∣∣ dω
′+Le(x,ω) (3)

Although the answer is still not given explicitly, the equation is now in a form
that is suitable for standard integral equation solution techniques. However, this is
made difficult by the ill-behaved nature of the integrand, which is generally riddled
with singularities and discontinuities caused by visibility changes in the ray-casting
function r. Practical solution methods often rely on a Neumann series expansion
of the underlying integral operator, in which case the resulting high number of
dimensions rules out standard deterministic integration rules requiring an exponential
number of function evaluations. Monte Carlo methods are resilient to these issues
and hence see significant use in rendering.

To obtain an unbiased MC estimator based on Equation (3), we replace the integral
with a single sample of the integrand at a random direction ω ′ and divide by its
probability density p(ω ′), i.e.

L̂o(x,ω) =
L̂o(r(x,ω ′),−ω ′) f (x,ω ′→ω) |ω ′ ·N(x)|

p(ω ′)
+Le(x,ω) (4)

In this case, EpL̂o = Lo, and by averaging many estimates L̂o, we obtain an ap-
proximation of the original integral. Typically, some form of importance sampling
is employed, e.g. by choosing a sampling density function p(ω ′) ∝ f (x,ω ′→ω).
Algorithm 1 shows the pseudo-code of the resulting recursive method. Based on the
underlying sequence of spherical sampling steps, path tracing can also be interpreted
as a method that generates trajectories along which light is carried from the light
source to the camera; we refer to these trajectories as a light paths and will revisit
this concept in more detail later. In practice, the path tracing algorithm is combined
with additional optimizations that lead to better convergence, but this is beyond the
scope of this article.

Due to their simplicity and ability to produce photorealistic images, optimized
path tracing methods have seen increased use in research and industrial applications.
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The downside of these methods is that they converge very slowly given challenging
input, sometimes requiring days or even weeks to compute a single image on state-
of-the-art computers. Problems arise whenever complete light paths are found with
too low a probability—a typical example is shown in Figure 5a.

4 The Path Space Formulation of Light Transport

In this section, we discuss the path space formulation of light transport, which
provides a clearer view of the sampling operations performed by Algorithm 1. This
framework can be used to develop other types of integration methods, including ones
based on MCMC proposals that we discuss afterwards.

The main motivation for using path space is that it provides an explicit expression
for the value of the radiance function as an integral over light paths, as opposed to
the unwieldy recursive estimations on spherical domains in Algorithm 1. This allows
for considerable freedom in developing and comparing sampling strategies. The path
space framework was originally developed by Veach [28] and builds on a theoretical
analysis of light transport operators by Arvo [1]. Here, we only present a high-level
sketch.

Let us define an integral operator T

(T h)(x,ω) :=
∫

S2
h(r(x,ω ′),−ω

′) f (x,ω ′→ω)
∣∣ω ′ ·N(x)

∣∣ dω
′, (5)

and use it to rewrite Equation (3) as

Lo = T Lo +Le.

An explicit solution for Lo can be found by inverting the operator so that

Lo = (1−T )−1Le.

Let ‖ · ‖L be a norm on the space of radiance functions

‖h‖L :=
∫

M

∫
S2

h(x,ω) |ω ·N(x)|dω dA(x),

which induces a corresponding operator norm ‖T‖op = sup‖h‖L≤1 ‖T h‖. Veach
proved that physically realizable scenes satisfy ‖T l‖op < 1 for some fixed l ∈ N.
Given this property, it is not only guaranteed that the inverse operator (1−T )−1

exists, but it can also be computed using a Neumann series expansion:

(1−T )−1 = I +T +T 2 + . . . ,

which intuitively expresses the property that the outgoing radiance is equal to the
emitted radiance plus radiance that has scattered one or more times (the sum con-



8 Wenzel Jakob

verges since the energy of the multiply scattered illumination tends to zero).

Lo = Le +T Le +T 2Le + · · · . (6)

Rather than explicitly computing the radiance function Lo, the objective of render-
ing is usually to determine the response of a simulated camera to illumination that
reaches its aperture. Suppose that the sensitivity of a pixel j in the camera is given by
sensitivity profile function W ( j)

e : M ×S2→R defined on ray space. The intensity I j
of the pixel is given by

I j =
∫

M

∫
S2

W ( j)
e (x,ω)Lo(r(x,ω),−ω) |ω ·N(x)| dω dA(x), (7)

which integrates over its sensitivity function weighted by the outgoing radiance
on surfaces that are observed by the camera. The spherical integral in the above
expression involves an integrand that is evaluated at the closest surface position as
seen from the ray (x,ω). It is convenient to switch to a different domain involving
only area integrals. We can transform the above integral into this form using the
identity ∫

S2
q(r(x,ω)) |ω ·N(x)| dω =

∫
M

q(y)G(x↔ y)dA(y), (8)

where x,y ∈M , and q : M→R is any integrable function defined on surfaces, and
G is the geometric term [24] defined as

G(x↔ y) :=V (x↔ y) ·
∣∣N(x) ·−→xy

∣∣ ∣∣N(y) ·−→xy
∣∣

‖x−y‖2 . (9)

The double arrows emphasize the symmetric nature of this function, −→xy is the nor-
malized direction from x to y, and V is a visibility function defined as

V (x↔ y) :=

{
1, if {αx+(1−α)y | 0 < α < 1}∩M = /0
0, otherwise

(10)

Applying the change of variables (8) to Equation (7) yields

I j =
∫

M

∫
M

W ( j)
e (x,−→xy)Lo(y,−→yx)G(x↔ y)dA(x,y). (11)

We can now substitute Lo given by Equation (6) into the above integral, which
is a power series of the T operator (i.e. increasingly nested spherical integrals).
Afterwards, we apply the change of variables once more to convert all nested spherical
integrals into nested surface integrals. This is tedious but straightforward and leads to
an explicit expression of I j in terms of an infinite series of integrals over increasing
Cartesian powers of M .

These nested integrals over surfaces are due to the propagation of light along
straight lines and changes of direction at surfaces, which leads to the concept of a light
path. This can be thought of as the trajectory of a particle carrying an infinitesimal
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portion of the illumination. It is a piecewise linear curve x̄ = x1 · · ·xn with endpoints
x1 and xn and intermediate scattering vertices x2, . . . ,xn−1. The space of all possible
light paths is a union consisting of paths with just the endpoints, paths that have one
intermediate scattering event, and so on. More formally, we define path space as

P :=
∞⋃

n=2

Pn, and

Pn := {x1 · · ·xn | x1, . . . ,xn ∈M } . (12)

The nested integrals which arose from our manipulation of Equation (11) are simply
integrals over light paths of different lengths, i.e.

I j =
∫

P2

ϕ(x1x2)dA(x1,x2) +
∫

P3

ϕ(x1x2x3)dA(x1,x2,x3)+ . . . . (13)

Because some paths carry more illumination from the light source to the camera
than others, the integrand ϕ : P→R is needed to quantify their “light-carrying
capacity”; its definition varies based on the number of input arguments and is given
by Equation (15). The total illumination I j arriving at the camera is often written
more compactly as an integral of ϕ over the entire path space, i.e.:

=:
∫

P
ϕ(x̄)dA(x̄). (14)

The definition of the weighting function ϕ consists of a product of terms—one for
each vertex and edge of the path:

ϕ(x1 · · ·xn) = Le(x1→x2)

[
n−1

∏
k=2

G(xk−1↔ xk) f (xk−1→xk→xk+1)

]
G(xn−1↔ xn)W ( j)

e (xn−1→xn). (15)

The arrows in the above expression symbolize the symmetry of the geometric terms
as well as the flow of light at vertices. xi→xi+1 can also be read as a spatial argument
xi followed by a directional argument −−−→xixi+1. Figure 4 shows an example light path
and the different weighting terms. We summarize their meaning once more:

• Le(x1→x2) is the emission profile of the light source. This term expresses the
amount of radiance emitted from position x1 traveling towards x2. It is equal to
zero when x1 is not located on a light source.

• W j
e (xn−1→xn) is the sensitivity profile of pixel j of the camera; we can think of

the pixel grid as an array of sensors, each with its own profile function.
• G(x↔ y) is the geometric term (Equation 9), which specifies the differential

amount of illumination carried along segments of the light path. Among other
things, it accounts for visibility: when there is no unobstructed line of sight
between x and y, G evaluates to zero.
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Fig. 4: Illustration of a simple light path with four vertices and its corresponding
weighting function.

• f (xk−1→xk→xk+1) is the BSDF, which specifies how much of the light that
travels from xk−1 to xk is then scattered towards position xk+1. This function
essentially characterizes the material appearance of an object (e.g., whether it is
made of wood, plastic, concrete, etc.).

Over the last 40 years, considerable research has investigated realistic expressions
for the Le,We, and f terms. In this article, we do not discuss their definition and
prefer to think of them as black box functions that can be queried by the rendering
algorithm. This is similar to how rendering software is implemented in practice:
a scene description might reference a particular material (e.g., car paint) whose
corresponding function f is provided by a library of material implementations. The
algorithm accesses it through a high-level interface shared by all materials, but
without specific knowledge about its internal characteristics.

4.1 Regular Expressions to Select Sets of Light Paths

Different materials can interact with light in fundamentally different ways, which
has important implications on the design of rendering algorithms. It is helpful to
distinguish between interactions using a 1-letter classification for each vertex type:

S (ideal specular): specular surfaces indicate boundaries between materials
with different indices of refraction (e.g., air and water). Ideal specular
boundaries have no roughness and cause and incident ray of light to be
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scattered into a discrete set of outgoing directions (Figure 3). Examples of
specular materials include polished glass and metal surfaces and smooth
coatings.

G (glossy): glossy surfaces also mark an index of refraction transition, but
in this case the surface is affected by small-scale roughness. This causes
the same ray to scatter into a continuous distribution of directions which
concentrates around the same directions as the ideally smooth case.

D (diffuse): diffuse surfaces reflect light into a directional distribution that is
either uniform or close to uniform; examples include clay and plaster.

We additionally assign the labels L and E to light source and camera (“eye”) vertices,
respectively, allowing for the classification of entire light paths using a sequence of
symbols (e.g., “LSDSE”). Larger classes of paths can be described using Heckbert’s
path regular expressions [8], which add convenient regular expression rules such as
the Kleene star “*” and plus “+” operators. For instance, LD+E refers to light that
has been scattered only by diffuse surfaces before reaching the camera. We will use
this formalism shortly.

4.2 Path Tracing Variants

The path tracing algorithm discussed in Section 3 constructs complete light paths
by randomly sampling them one vertex at a time (we refer to this as sequential
sampling). In each iteration, it randomly chooses an additional light path vertex xi−1
using a probability density that is proportional to the (partial) weighting function
ϕ(· · ·xi−1xixi+1 · · ·) involving only factors that depend on the previous two vertices,
i.e. xi and xi+1 (this is a variant of the Markov property). The indices decrease
because the algorithm constructs paths in reverse; intuitively, it searches for the
trajectory of an idealized light “particle” that moves backwards in time until its
emission point on the light source is found.

Path tracing performs poorly when the emission point of a light path is challenging
to find, so that complete light paths are constructed with low probability. This occurs
in a wide range of situations; Figure 5 shows an example where the light sources
are encased, making it hard to reach them by chance. The path tracing rendering has
unacceptably high variance at 32 samples per pixel.

The path space view makes it possible to construct other path tracing variants with
better behavior. For instance, we can reverse the direction of the random walk and
generate vertex xi+1 from xi and xi−1, which leads to a method referred to as light
tracing or particle tracing. This method sends out particles from the light source
(thus avoiding problems with the enclosure) and records the contribution to rendered
pixels when they hit the aperture of the camera.
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(a) Path tracer, 32 samples/pixel (b) Bidirectional path tracer, 32 samples/pixel

Fig. 5: A bidirectional path tracer finds light paths by generating partial paths starting
at the camera and light sources and connecting them in every possible way. The result-
ing statistical estimators tend to have lower variance than unidirectional techniques.
Modeled after a scene by Eric Veach.

4.2.1 Bidirectional Path Tracing (BDPT)

The bidirectional path tracing method (BDPT) [29, 17] computes radiance estimates
via two separate random walks from the light sources and the camera. The resulting
two partial paths are connected for every possible vertex pair, creating many complete
paths of different lengths, which supplies this method with an entire family of path
sampling strategies. A path with n vertices can be created in n+1 different ways,
which is illustrated by Figure 6 for a simple path with 3 vertices (2 endpoints and 1
scattering event). The captions s and t indicate the number of sampling steps from
the camera and light source. In practice, each of the strategies is usually successful
at dealing with certain types of light paths, while being a poor choice for others
(Figure 7).

4.2.2 Multiple Importance Sampling (MIS)

Because all strategies are defined on the same space (i.e. path space), and because
each has a well-defined density function on this space, it is possible to evaluate
and compare these densities to determine the most suitable strategy for sampling
particular types of light paths. This is the key insight of multiple importance sampling
(MIS) [30] which BDPT uses to combine multiple sampling strategies in a provably
good way to minimize variance in the resulting rendering (bottom of Figure 7).

Suppose two statistical estimators of the pixel intensity I j are available. These
estimators can be used to generate two light paths x̄1 and x̄2, which have path
space probability densities p1(x̄1) and p2(x̄2), respectively. The corresponding MC
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(a) s=0, t=3

(c) s=2, t=1

(b) s=1, t=2

(d) s=3, t=0

Fig. 6: The four different ways in which bidirectional path tracing can create a path
with one scattering event: (a) Standard path tracing, (b) Path tracing variant: connect
to sampled light source positions, (c) Standard light tracing, (d) Light tracing variant:
connect to sampled camera positions. Solid lines indicate sampled rays which are
intersected with the geometry, whereas dashed lines indicate deterministic connection
attempts which must be validated by a visibility test.

estimates are given by

〈I(1)j 〉=
ϕ(x̄1)

p1(x̄1)
and 〈I(2)j 〉=

ϕ(x̄2)

p2(x̄2)
.

To obtain a combined estimator, we could simply average these estimators, i.e.:

〈I(3)j 〉 :=
1
2
(
〈I(1)j 〉+ 〈I

(2)
j 〉
)
.

However, this is not a good idea, since the combination is affected by the variance
of the worst ingredient estimator (BDPT generally uses many estimators, including
ones that have very high variance). Instead, MIS combines estimators using weights
that are related to the underlying sample density functions:

〈I(4)j 〉 := w1(x̄1)〈I(1)j 〉+w2(x̄2)〈I(2)j 〉,

where

wi(x̄) :=
pi(x̄)

p1(x̄)+ p2(x̄)
. (16)

While not optimal, Veach proves that no other choice of weighting functions can
significantly improve on Equation (16). He goes on to propose a set of weighting
heuristics that combine many estimators (i.e., more than two), and which yield
perceptually better results. The combination of BDPT and MIS often yields an
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s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

(a) Unweighted

s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

(b) Weighted

Fig. 7: The individual sampling strategies that comprise the previous BDPT render-
ing, both without (top) and with (bottom) multiple importance sampling. Each row
corresponds to light paths of a certain length, and the top row matches the four strate-
gies from Figure 6. Almost every strategy has deficiencies of some kind; multiple
importance sampling re-weights samples to use strategies where they perform well.
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effective method that addresses many of the flaws of the path tracing algorithm. Yet,
even this combination can fail in simple cases, as we will discuss next.

4.3 Limitations of Monte Carlo Path Sampling

Ultimately, all Monte Carlo path sampling techniques can be seen to compute inte-
grals of the weighting function ϕ using a variety of importance sampling techniques
that evaluate ϕ at many randomly chosen points throughout the integration domain,
i.e., path space P .

Certain input, particularly scenes containing metal, glass, or other shiny surfaces,
can lead to integrals that are difficult to evaluate. Depending on the roughness of the
surfaces, the integrand can take on large values over small regions of the integration
domain. Surfaces of lower roughness lead to smaller and higher-valued regions,
which eventually collapse to lower-dimensional sets with singular integrands as the
surface roughness tends to zero. This case where certain paths cannot be sampled at
all is known as the problem of insufficient techniques [16].

Convergence problems arise whenever high-valued regions receive too few sam-
ples. Depending on the method used, this manifests as objectionable noise or other
visual artifacts in the output image that gradually disappear as the sample count
N tends to infinity. However, due to the slow convergence rate of MC integration
(typical error is O(N−0.5)), it may not be an option to wait for the error to aver-
age out. Such situations can force users of rendering software to make unrealistic
scene modifications (e.g., disabling certain light interactions), thereby compromising
realism in exchange for obtaining converged-looking results within a reasonable
time. Biased estimators can achieve lower errors in some situations—however, these

(a) Path tracing from the light source (b) Path tracing from the camera

?

?

?
(c) Bidirectional path tracing

Fig. 8: Illustration of the difficulties of sequential path sampling methods when
rendering LSDSE caustic patterns at the bottom of a swimming pool. (a, b): Unidi-
rectional techniques sample light paths by executing a random walk consisting of
alternating transport and scattering steps. The only way to successfully complete a
path in this manner is to randomly “hit” the light source or camera, which happens
with exceedingly low probability. (c): Bidirectional techniques trace paths from both
sides, but in this case they cannot create a common vertex at the bottom of the pool
to join the partial light paths.
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methods are beyond the scope of this article, we refer the reader to Pharr et al. [24]
for an overview.

Figure 8 illustrates the behavior of several path sampling methods when rendering
caustics, which we define as light paths matching the regular expression LS+DS*E.
They form interesting light patterns at the bottom of the swimming pool due to
focusing effect of ripples in the water surface.

In Figure 8 (a), light tracing is used to emit particles proportional to the light
source emission profile Le. The highlighted path is the trajectory of a particle that
encounters the water surface and refracts into the pool. The refraction is an ideal
specular interaction described by Snell’s law and the Fresnel equations. The diffuse
concrete surface at the pool bottom then reflects the particle upwards into a direction
drawn from a uniform distribution, where it is refracted once more by the water
surface. Ultimately, the particle never hits the camera aperture and thus cannot
contribute to the output image.

Figure 8 (b) shows the behavior of the path tracing method, which generates paths
in the reverse direction but remains extremely inefficient: in order to construct a
complete light path x̄ with ϕ(x̄)> 0, the path must reach the “other end” by chance,
which happens with exceedingly low probability. Assuming for simplicity that rays
leave the pool with a uniform distribution in Figure 8 (b), the probability of hitting
the sun with an angular diameter of ∼ 0.5◦ is on the order of 10−5.

BDPT traces paths from both sides, but even this approach is impractical here:
vertices on the water surface cannot be used to join two partial paths, since the
resulting pair of incident and outgoing directions would not satisfy Snell’s law. It is
possible to generate two vertices at the bottom of the pool as shown in the figure,
but these cannot be connected: the resulting path edge would be fully contained in a
surface rather than representing transport between surfaces.

In this situation, biased techniques would connect the two vertices at the bottom
of the pool based on a proximity criterion, which introduces systematic errors into
the solution. We will only focus on unbiased techniques that do not rely on such
approximations.

The main difficulty in scenes like this is that caustic paths are tightly constrained:
they must start on the light source, end on the aperture, and satisfy Snell’s law in two
places. Sequential sampling approaches are able to satisfy all but one constraint and
run into issues when there is no way to complete the majority of paths.

Paths like the one examined in Figure 8 lead to poor convergence in other settings
as well; they are collectively referred to as specular–diffuse–specular (SDS) paths
due to the occurrence of this sequence of interactions in their path classification.
SDS paths occur in common situations such as a tabletop seen through a drinking
glass standing on it, a bottle containing shampoo or other translucent liquid, a shop
window viewed and illuminated from outside, as well as scattering inside the eye of
a virtual character. Even in scenes where these paths do not cause dramatic effects,
their presence can lead to excessively slow convergence in rendering algorithms that
attempt to account for all transport paths. It is important to note that while the SDS
class of paths is a well-studied example case, other classes (e.g., involving glossy
interactions) can lead to many similar issues. It is desirable that rendering methods
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Algorithm 2 Pseudocode of a MCMC-based rendering algorithm

1 function METROPOLIS-LIGHT-TRANSPORT
2 x̄0 ← An initial light path
3 for i = 1 to N do
4 x̄′i ← MUTATE(x̄i−1)

5 x̄i ←

{
x̄′i with probability min

{
1, ϕ(x̄′i)T (x̄

′
i,x̄i−1)

ϕ(x̄i−1)T (x̄i−1,x̄′i)

}
x̄i−1 otherwise

6 RECORD(x̄i)

are robust to such situations. Correlated path sampling techniques based on MCMC
offer an attractive way to approach such challenges. We review these methods in the
remainder of this article.

5 Markov Chain Monte Carlo (MCMC) Rendering Techniques

In 1997, Veach and Guibas proposed an unusual rendering technique named Metropo-
lis Light Transport [31], which applies the Metropolis-Hastings algorithm to the path
space integral in Equation (14). Using correlated samples and highly specialized
mutation rules, their approach enables more systematic exploration of the integration
domain, avoiding many of the problems encountered by methods based on standard
Monte Carlo and sequential path sampling.

Later, Kelemen et al. [14] showed that a much simpler approach can be used
to combine MCMC sampling with existing MC rendering algorithms, making it
possible to side-step the difficulties of the former method. The downside of their
approach is the reduced flexibility in designing custom mutation rules. An extension
by Hachisuka et al. [7] further improves the efficiency of this method.

Considerable research has built on these two approaches, including extensions
to participating media [23], combinations of MCMC and BDPT [7], specialized
techniques for specular [11] and glossy [13] materials, gradient-domain rendering
[18, 19], and MCMC variants which perform a localized non-ergodic exploration of
path space [3].

In this section, we provide an overview of the initial three methods, starting first
with the Primary Sample Space approach by Kelemen et al., followed the extension by
Hachisuka et al., and finally the Metropolis Light Transport algorithm by Veach and
Guibas. All variants are based on a regular MCMC iteration shown in Algorithm 2.
Starting with an initial light path x̄0, the methods simulate N steps of a Markov Chain.
In each step, a mutation is applied to the path x̄i−1 to obtain a proposal path x̄′i, where
it is assumed that the proposal density is known and given by T (x̄i−1, x̄′i). After a
standard Metropolis-Hastings acceptance/rejection step, the algorithm invokes the
function RECORD(x̄i), which first determines the pixel associated with the current
iteration’s light path xi and then increases its brightness by a fixed amount.
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These MCMC methods all sample light paths proportional to the amount they
contribute to the pixels of the final rendering; by increasing the pixel brightness in
this way during each iteration, these methods effectively compute a 2D histogram of
the marginal distribution of ϕ over pixel coordinates. This is exactly the image to be
rendered up to a global scale factor, which can be recovered using a traditional MC
sampling technique such as BDPT. The main difference among these algorithms is
the underlying state space, as well as the employed set of mutation rules.

5.1 Primary Sample Space Metropolis Light Transport (PSSMLT)

Primary Sample Space Metropolis Light Transport (PSSMLT) [14] combines tra-
ditional MC sampling techniques with a MCMC iteration. The approach is very
flexible and can also be applied to integration problems outside of computer graphics.
PSSMLT always operates on top of an existing MC sampling technique; we assume
for simplicity that path tracing is used, but many other techniques are also admissi-
ble. The details of this method are easiest to explain from a implementation-centric
viewpoint.

Recall the path tracing pseudo-code shown earlier in Algorithm 1. Lines 1 and 2
performed random sampling steps, but the rest of the procedure was fully determinis-
tic. In practice, the first two lines are often realized using a pseudorandom number
generator such as Mersenne Twister [20] or a suitable quasi-Monte Carlo scheme
[6], potentially using the inversion method or a similar technique to warp uniform
variates to desired distributions as needed. For more details, we refer the reader to a
tutorial by Keller [15].

Let us consider a small adjustment to the implementation of this method: instead
of generating univariate samples during the recursive sampling steps, we can also
generate them ahead of time and supply them to the implementation as an additional
argument, in which case the algorithm can be interpreted as a fully deterministic
function of its (random or pseudorandom) arguments. Suppose that we knew (by
some way) that the maximum number of required random variates was equal to n,
and that the main computation was thus implemented by a function with signature
Ψ : [0,1]n→R, which maps a vector of univariate samples to a pixel intensity
estimate. By taking many estimates and averaging them to obtain a converged pixel
intensity, path tracing is effectively integrating the estimator over a n-dimensional
unit hypercube of “random numbers” denoted as primary sample space:

I j =
∫
[0,1]n

Ψ(ξ )dξ . (17)

The key idea of PSSMLT is to compute Equation (17) using MCMC integration on
primary sample space, which leads to a trivial implementation, as all complications
involving light paths and other rendering-specific details are encapsulated in the
“black box” mapping Ψ (Figure 9).
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(b) Path space view(a) Primary sample space view

Fig. 9: Primary Sample Space MLT performs mutations in an abstract random number
space. A deterministic mapping Ψ induces corresponding mutations in path space.

One missing detail is that the primary sample space dimension n is unknown
ahead of time. This can be solved by starting with a low-dimensional integral and
extending the dimension on demand when additional samples are requested by Ψ .

PSSMLT uses two types of MUTATE functions. The first is an independence
sampler, i.e., it forgets the current state and switches to a new set of pseudorandom
variates. This is needed to ensure that the Markov Chain is ergodic. The second is a
local (e.g. Gaussian or similar) proposal centered around a current state ξi ∈ [0,1]n.
Both are symmetric so that the proposal density T cancels in the acceptance ratio
(Line 5 in Algorithm 2).

PSSMLT uses independent proposals to find important light paths that cannot be
reached using local proposals. When it finds one, local proposals are used to explore
neighboring light paths which amortizes the cost of the search. This can significantly
improve convergence in many challenging situations and is an important advantage
of MCMC methods in general when compared to MC integration.

Another advantage of PSSMLT is that it explores light paths through a black box
mapping Ψ that already makes internal use of sophisticated importance sampling
techniques for light paths, which in turn leads to an easier integration problem in
primary sample space. The main disadvantage of this method is that its interaction
with Ψ is limited to a stream of pseudorandom numbers. It has no direct knowledge
of the generated light paths, which prevents the design of more efficient mutation
rules based on the underlying physics.

5.2 Multiplexed Metropolis Light Transport (MMLT)

PSSMLT is commonly implemented in conjunction with the BDPT technique: in this
setting, the rendering algorithm generates paths using a large set of BDPT connection
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Fig. 10: Analysis of the Multiplexed MLT (MMLT) technique [7] (used with permis-
sion): the top row shows weighted contributions from different BDPT strategies in a
scene with challenging indirect illumination [18, 28]. The intensities in the middle
row visualize the time spent on each strategy using the MMLT technique: they are
roughly proportional to the weighted contribution in the first row. The rightmost
column visualizes the dominant strategies (3,4), (4, 3), and (5, 2) using RGB colors.
PSSMLT (third row) cannot target samples in this way and thus produces almost
uniform coverage.

strategies and then re-weights them using MIS. In most cases, only a subset of the
strategies is truly effective, and MIS will consequently assign a large weight to this
subset. One issue with the combination of BDPT and PSSMLT is that the algorithm
still spends a considerable portion of its time generating connections with strategies
that have low weights and thus contribute very little to the rendered image. Hachisuka
et al. [7] recently presented an extension of PSSMLT named Multiplexed Metropolis
Light Transport (MMLT) to address this problem.

They propose a simple but effective modification to the inner BDPT sampler;
the outer Metropolis-Hastings iteration remains unchanged: instead of generating
a sample from all BDPT connection strategies, the algorithm (pseudo-)randomly
chooses a single strategy and returns its contribution scaled by the inverse discrete
probability of the choice. This (pseudo-)random sample is treated in the same way as
other sampling operations in PSSMLT and exposed as an additional state dimension
that can be mutated using small or large steps. The practical consequence is that the
Markov Chain will tend to spend more computation on effective strategies, which
further improves the statistical efficiency of the underlying estimator (Figure 10).

5.3 Path Space Metropolis Light Transport (MLT)

Path Space Metropolis Light transport, or simply Metropolis Light transport
(MLT) [31] was the first application of MCMC to the problem of light transport.
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(a) Lens perturbation (b) Caustic perturbation

(c) Multi-chain perturbation (d) Manifold perturbation

Fig. 11: MLT operates on top of path space, which permits the use of a variety of
mutation rules that are motivated by important physical scattering effects. The top
row illustrates ones that are useful when rendering a scene involving a glass object on
top of a diffuse table. The bottom row is the swimming pool example from Figure 8.
In each example, the original path is black, and the proposal is highlighted in blue.

Doucet et al. [5] proposed a related method in applied mathematics, which focuses
on a more general class of integral equations.

The main difference as compared to PSSMLT is that MLT operates directly on path
space and does not use a black-box mapping Ψ . Its mutation rules are considerably
more involved than those of PSSMLT, but this also provides substantial freedom
to design custom rules that are well-suited for rendering specific physical effects.
MLT distinguishes between mutations that change the structure of the path and
perturbations that move the vertices by small distances while preserving the path
structure, both using the building blocks of bidirectional path tracing to sample paths.
One of the following operations is randomly selected in each iteration:

1. Bidirectional mutation: This mutation replaces a segment of an existing path
with a new segment (possibly of different length) generated by a BDPT-like
sampling strategy. This rule generally has a low acceptance ratio but it is essential
to guarantee ergodicity of the resulting Markov Chain.

2. Lens subpath mutation: The lens subpath mutation is similar to the previous
mutation but only replaces the lens subpath, which is defined as the trailing
portion of the light path matching the regular expression [ˆS]S*E.

3. Lens perturbation: This transition rule shown in Figure 11a only perturbs the
lens subpath rather than regenerating it from scratch. In the example, it slightly
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rotates the outgoing ray at the camera and propagates it until the first non-specular
material is encountered. It then attempts to create a connection (dashed line) to
the unchanged remainder of the path.

4. Caustic perturbation: The caustic perturbation (Figure 11b) works just like the
lens perturbation, except that it proceeds in reverse starting at the light source. It
is well-suited for rendering caustics that are directly observed by the camera.

5. Multi-chain perturbation: This transition rule (Figure 11c) is used when there
are multiple separated specular interactions, e.g., in the swimming pool example
encountered before. After an initial lens perturbation, a cascade of additional
perturbations follows until a connection to the remainder of the path can finally
be established.

The main downside of MLT is the severe effort needed to implement this method:
several of the mutation and perturbation rules (including their associated proposal
densities) are challenging to reproduce. Another problem is that a wide range of
different light paths generally contribute to the output image. The MLT perturbations
are designed to deal with specific types of light paths, but it can be difficult to
foresee every kind in order to craft a suitable set of perturbation rules. In practice,
the included set is insufficient.

6 Specular Manifolds and Manifold Exploration (ME)

In this section, we discuss the principles of Manifold Exploration (ME) [11], which
leads to the manifold perturbation (Figure 11d). This perturbation provides local
exploration for large classes of different path types and subsumes MLT’s original set
of perturbations. We begin with a discussion of the concept of a specular manifold.
When a scene contains ideal specular materials, these materials require certain
physical laws to be satisfied (e.g. Snell’s law or the law of reflection). Mathematically,
these act like constraint equations that remove some dimensions of the space of light
paths, leaving behind a lower-dimensional manifold embedded in path space.

Light source Camera

Mirror

Fig. 12: A motivating example in two dimensions: specular reflection in a mirror
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We illustrate this using a simple example in two dimensions, in which a camera
observes a planar light source through an opposing mirror (Figure 12). We will refer
to a light path joining two endpoints through a sequence of k ideal specular scattering
events as a specular chain of length k. A specular chain of length 1 from the light
source to the camera is shown in the figure.

Reflections in the mirror must satisfy the law of specular reflection. Assuming
that the space of all specular chains in this simple scene can be parameterized using
the horizontal coordinates x1,x2, and x3, it states that

x2 =
x1 + x3

2
, (18)

i.e., the x coordinate of the second vertex must be exactly half-way between the
endpoints. Note that this equation can also be understood as the implicit definition of
a plane in R3 (x1−2x2 + x3 = 0).

When interpreting the set of all candidate light paths as a three-dimensional space
P3 of coordinate tuples (x1,x2,x3), this constraint then states that the subset of
relevant paths has one dimension less and is given by the intersection of P3 and
the plane equation (18). With this extra knowledge, it is now easy to sample valid
specular chains, e.g. by generating x1 and x3 and solving for x2.

Given general non-planar shapes, the problem becomes considerably harder, since
the equations that have to be satisfied are nonlinear and may admit many solutions.
Prior work has led to algorithms that can find solutions even in such cases [21, 33]
but these methods are closely tied to the representation of the underlying geometry,
and they become infeasible for specular chains with lengths greater than one. Like
these works, ME finds valid specular chains—but because it does so within the
neighborhood of a given path, it avoids the complexities of a full global search and
does not share these limitations.

ME is also related to the analysis of reflection geometry presented by Chen and
Arvo [2], who derived second-order expansion of the neighborhood of a path. The
main difference is that ME solves for paths exactly and is used as part of an unbiased
MCMC rendering algorithm.

6.1 Integrals over Specular Manifolds

Let us return to our previous example of the swimming pool involving the family
of light paths LSDSE. These paths belong to the P5 component of the path space
P (Equation 12), which is a 10-dimensional space with two dimensions for each
surface position. As we will see shortly, the paths that contribute have to satisfy two
constraint equations involving unit directions in R3 (which each have 2 degrees of
freedom). This constrains a total of four dimensions of the path, meaning that all
contributing paths lie on a manifold S of dimension 6 embedded in P5.

The corresponding integral equation (13) is more naturally expressed as an integral
over this specular manifold S , rather than as an integral over the entire path space:
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ϕ(x1 · · ·x5)dA(x1,x3,x5).

Note the absence of the specular vertices x2 and x4 in the integral’s area product
measure. The contribution function ϕ still has the same form: a product of terms cor-
responding to vertices and edges of the path. However, singular reflection functions
at specular vertices are replaced with (unitless) specular reflectance values, and the
geometric terms are replaced by generalized geometric terms over specular chains
that we will denote G(x1↔x2↔x3) and G(x3↔x4↔x5).

The standard geometric term G(x↔y) for a non-specular edge computes the area
ratio of an (infinitesimally) small surface patch at one vertex and its projection onto
projected solid angles as seen from the other vertex. The generalized geometry factor
is defined analogously: the ratio of solid angle at one end of the specular chain with
respect to area at the other end of the chain, considering the path as a function of the
positions of the endpoints.

6.2 Constraints for Reflection and Refraction

Equation (18) introduced a simple specular reflection constraint for axis-aligned
geometry in two dimensions. This constraint easily generalizes to arbitrary geometry
in three dimensions and to both specular reflection and refraction.

Recall the law of specular reflection, which states that incident and outgoing
directions make the same angle with the surface normal. Furthermore, all three
vectors must be coplanar (Figure 13). We use an equivalent reformulation of this law,
which states that the half direction vector of the incident and outgoing direction ωi
and ωo, defined as

h(ωi,ωo) :=
ωi +ωo

‖ωi +ωo‖
, (19)

is equal to the surface normal, i.e., h(ωi,ωo) = n. In the case of refraction, the
relationship of these directions is explained by Snell’s law. Using a generalized
definition of the half direction vector which includes weighting by the incident and

Specular reflection Specular refraction

Fig. 13: In-plane view of the surface normal n and incident and outgoing directions
ωi and ωo at a surface marking a transition between indices of refraction ηi and ηo.
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outgoing indices of refraction [32]; i.e.,

h(ωi,ωo) :=
ηiωi +ηoωo

‖ηiωi +ηoωo‖
, (20)

we are able to use a single constraint h(ωi,ωo) =±n which subsumes both Snell’s
law and the law of specular reflection (in which case ηi equals ηo). Each specular
vertex xi of a path x̄ must satisfy this generalized constraint involving its own position
and the positions of the preceding and following vertices. Note that this constraint
involves unit vectors with only two degrees of freedom. We can project (20) onto a
two-dimensional subspace to reflect its dimensionality:

ci(x̄) = T (xi)
T h(−−−→xixi−1,

−−−→xixi+1), (21)

The functions ci : P→R2 compute the generalized half-vector at vertex xi and
project it onto the tangent space of the underlying scene geometry at this position,
which is spanned by the columns of the matrix T (xi) ∈ R3×2; the resulting 2-vector
is zero when h(ωi,ωo) is parallel to the normal. Then the specular manifold is simply
the set

S = {x̄ ∈P | ci(x̄) = 0 if vertex xi is specular} . (22)

6.3 Local Manifold Geometry

The complex nonlinear behavior of S severely limits our ability to reason about its
geometric structure globally. In this section, we therefore focus on local properties,
leading to an explicit expression for the tangent space at any point on the manifold.
This constitutes the key geometric information needed to construct a numerical
procedure that is able to move between points on the manifold.

For simplicity, let us restrict ourselves to the case of a single specular chain
x̄ = x1 · · ·xk with k− 2 specular vertices and non-specular endpoints x1 and xk,
matching the path regular expression DS+D. This suffices to cover most cases by
separate application to each specular chain along a path. To analyze the geometry
locally, we require a point in S , i.e., a light path x̄ satisfying all specular constraints,
to be given.

We assume that local parameterizations of the surfaces in the scene on small
neighborhoods around every vertex are provided via functions x̂i(ui,vi) : R2→M ,
where x̂i(0,0) = xi. We can then express the constraints ci in terms of these local
coordinates and stack them on top of each other to create a new function ĉ with
signature ĉ : IR2k→IR2k−4, which maps 2k local coordinate values to 2k−4= 2(k−2)
projected half direction vector coordinates—two for each of the specular vertices of
the chain. The set

Sloc =
{
(u1,v1, . . . ,uk,vk) ∈ R2k

∣∣∣ ĉ(. . .) = 0
}

(23)
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(a) An example path (b) Associated constraints

(c) Constraint Jacobian (d) Tangent space

D
where

Fig. 14: The linear system used to compute the tangent space and its interpretation as
a derivative of a specular chain.

then describes the (four-dimensional) specular manifold in terms of local coordinates
around the path x̄, which is identified with the origin. Under the assumption that the
Jacobian of ĉ has full rank (more on this shortly), the Implicit Function Theorem [26]
states that the implicitly defined manifold (23) can be converted into the (explicit)
graph of a function q : IR4→ IR2k−4 on an epsilon ball B4(ε) around the origin.
Different functions q are possible—in our case, the most useful variant determines
the positions of all the specular vertices from the positions of the non-specular
endpoints, i.e.

S ′
loc =

{
(u1, v1, q(u1,v1,uk,vk), uk, vk)

∣∣ (u1,v1,uk,vk) ∈B4(ε)
}
. (24)

Unfortunately, the theorem does not specify how to compute q—it only guarantees
the existence of such a function. It does, however, provide an explicit expression for
the derivative of q, which contains all information we need to compute a basis for the
tangent space at the path x̄, which corresponds to the origin in local coordinates. This
involves the Jacobian of the constraint function ∇ĉ(000), which is a matrix of k−2 by
k 2-by-2 blocks with a block tridiagonal structure (Figure 14).
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If we block the derivative ∇ĉ, as shown in the figure, into 2-column matrices B1
and Bk for the first and last vertices and a square matrix A for the specular chain, the
tangent space to the manifold in local coordinates is

TS (x̄) =−A−1 [B1 Bk
]
. (25)

This matrix is k−2 by 2 blocks in size, and each block represents the derivative of
one vertex with respect to one endpoint.

This construction computes tangents with respect to a graph parameterization
of the manifold, which is guaranteed to exist for a suitable choice of independent
variables. Because we always use the endpoint vertices for this purpose, difficulties
arise when one of the endpoints is located exactly at the fold of a caustic wavefront,
in which case ∇ĉ becomes rank-deficient and A fails to be invertible. This happens
rarely in practice and is not a problem for our method, which allows for occasional
parameterization failures. In other contexts where this is not acceptable, the chain
could be parameterized by a different pair of vertices when a non-invertible matrix is
detected.

These theoretical results about the structure of the specular manifold can be used
in an algorithm to solve for specular paths, which we discuss next.

6.4 Walking on the Specular Manifold

In practice, we always keep one endpoint fixed (e.g., x1), while parameterizing the
remaining two-dimensional set. Figure 15 shows a conceptual sketch of the manifold
of a specular chain that is parameterized by the last vertex xk. This vertex is initially
located at xstart

k , and we search for a valid configuration where it is at position xtarget
k .

The derivation in Section 6.3 provides a way of extrapolating the necessary change
of x2, . . . ,xk−1 to first order, but this is not enough: an expansion, no matter to what
order, will generally not be able to find a valid path that is located on S .

Start

Target

extrapolate

projec
t

extrapolate

project

Fig. 15: Manifold walks use a Newton-like iteration to locally parameterize the
specular manifold. The extrapolation operation takes first-order steps based on the
local manifold tangents, which are subsequently projected back onto the manifold.
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To address this issue, we combine the extrapolation with a simple projection oper-
ation, which maps approximate paths back onto S by intersecting the extrapolated
ray x1→x2 with the scene geometry and using the appropriate laws of reflection and
refraction to compute the remaining vertex locations. The combination of extrapola-
tion and projection behaves like Newton’s method, exhibiting quadratic convergence
near the solution; details on this iteration can be found in the original paper [11].

Figure 16 shows a sketch of how manifold walks can be used in a MLT-like
iteration: a proposal begins to modify a light path by perturbing the outgoing direction
at vertex xa. Propagating this direction through a specular reflection leads to a
modified position x′b on a diffuse surface. To complete the partial path, it is necessary
to find a specular chain connecting x′b to the light source. Here, we can simply
apply a manifold walk to the existing specular chain xb · · ·xc to solve for an updated
configuration x′b · · ·xc. The key observation is that MCMC explores the space of light
paths using localized steps, which is a perfect match for the local parameterization
of the path manifold provided by Manifold Exploration.

6.5 Results

Figures 17 and 18 show the comparisons of several MCMC rendering techniques
for an interior scene containing approximately 2 million triangles with shading
normals and a mixture of glossy, diffuse, and specular surfaces and some scattering
volumes. One hour of rendering time was allotted to each technique; the results are
intentionally unconverged to permit a visual analysis of the convergence behavior.
By reasoning about the geometry of the specular and offset specular manifolds for
the paths it encounters, the ME perturbation strategy is more successful at rendering
certain paths—such as illumination that refracts from the bulbs into the butter dish,
then to the camera (6 specular vertices)—that the other methods struggle with.

updated

traced

half-vector equal
to surface normal

Fig. 16: Example of a manifold-based path perturbation.
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(a) MLT [28] (b) ERPT [3]

(c) PSSMLT [14] (d) ME [11]

Fig. 17: This interior scene shows chinaware, a teapot containing an absorbing
medium, and a butter dish on a glossy silver tray. Illumination comes from a complex
chandelier with glass-enclosed bulbs. Prior methods have difficulty in finding and
exploring relevant light paths, which causes noise and other convergence artifacts.
Equal-time renderings on an eight-core Intel Xeon X5570 machine at 1280×720
pixels in 1 hour.

(a) MLT [28] (b) ERPT [3] (c) PSSMLT [14] (d) ME [11]

Fig. 18: This view of a different part of the room, now lit through windows using
a spherical environment map surrounding the scene, contains a scattering medium
inside the glass egg. Equal-time renderings at 720×1280 pixels in 1 hour.
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Schematic path space viewValid path configurations

Specular

Glossy

Fig. 19: Sketch of the generalization of Manifold Exploration to glossy materials.

7 Perturbation Rules for Glossy Transport

Realistic scenes contain a diverse set of materials and are usually not restricted to
specular or diffuse BSDFs. It is important for the used rendering method to generalize
to such cases. All derivations thus far focused on ideal specular materials, but it is
possible to extend manifold walks to glossy materials as well. Jakob and Marschner
proposed a simple generalization of ME, which works for moderately rough materials,
and Kaplanyan et al. [13] recently developed a natural constraint representation of
light paths. They proposed a novel half vector-based perturbation rule as well as
numerous enhancements including better tolerance to non-smooth geometry and
sample stratification in image space based on a frequency analysis of the scattering
operator. We provide a high level overview of both approaches here.

7.1 Glossy Materials in the Manifold Perturbation

Figure 19 shows a sketch of this generalization. In the ideal specular case, there is a
single specular chain (or discrete set) connecting xb and xc (top left), and all energy
is concentrated on a lower-dimensional specular manifold defined by c(x̄) = 0 (top
right). In the glossy case, there is a continuous family of chains connecting xb and xc
(bottom left), and the space of light paths has its energy concentrated in a thin “band”
near the specular manifold. The key idea of how ME handles glossy materials is to
take steps along a family of parallel offset manifolds c(x̄) = k (bottom right) so that
path space near the specular manifold can be explored without stepping out of this
thin band of near-specular light transport.
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7.2 The Natural Constraint Formulation

The method by Kaplanyan et al. [13] takes a different approach to explore glossy
transport paths (Figure 20): instead of parameterizing a glossy chain by fixing its half
vectors and moving the chain endpoints, their method parameterizes complete paths
starting at the light source and ending at the camera. The underlying manifold walk
keeps the path endpoints fixed and computes a nearby light path as a function of its
half vectors. The set of all half vectors along a path can be interpreted as a type of
generalized coordinate system for light paths: its dimension equals the path’s degrees
of freedom, while capturing the relevant constraints (reflection and refraction) in a
convenient explicit form. For this reason, the resulting parameterization is referred to
as the natural constraint representation, and the method is called half vector space
light transport (HSLT); loosely speaking, its perturbation can be seen to explore
“orthogonal” directions as compared to the “parallel” manifold walks of ME.

The underlying approach is motivated by the following interesting observation:
when parameterizing light paths in terms of their half vectors, the influence of
material terms on the integrand ϕ approximately decouples (Figure 21). The reason
for this effect is that the dominant terms in glossy reflectance models (which are
factors of ϕ) depend on the angle between the half vector and the surface normal. The

h3h2 h4
h5

x1

x5x3

x4
x2

x1

x5x3

x4
x2

h3h2 h4
h5

Fig. 20: In the above example, ME (top) constrains the half vectors of two glossy
chains x1 · · ·x4 and x4 · · ·x6 and solves for an updated configuration after perturbing
the position of x4. HSLT (bottom) instead adjusts all half vectors at once and solves
for suitable vertex positions with this configuration. This proposal is effective for
importance sampling the material terms and leads to superior convergence when
dealing with transport between glossy surfaces. Based on a figure by Kaplanyan
et al. [13] (used with permission).
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Fig. 21: The natural constraint formulation [13] is a parameterization of path space
in the half vector domain. It has the interesting property of approximately decoupling
the influence of the individual scattering events on ϕ . The figure shows a complex
path where the half vector h3 is perturbed at vertex x3. The first column shows
a false-color plot of ϕ over the resulting paths for different values of h3 and two
roughness values. The second column shows a plot of the BSDF value at this vertex,
which is approximately proportional to ϕ . Based on a figure by Kaplanyan et al. [13]
(used with permission).

MEMLT (30m)   

HSLT+MLT (30m)

Fig. 22: Equal-time rendering of an interior kitchen scene with many glossy reflec-
tions. Based on a figure by Kaplanyan et al. [13] (used with permission).
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change of variables from path space to the half vector domain furthermore cancels out
the geometry terms G, leading to additional simplifications. As a consequence, this
parameterization turns ϕ into a much simpler function resembling a separate Gaussian
in each half vector dimension, which is related to the roughness of the associated
surface. Kaplanyan et al. also demonstrate how frequency-space information about
the scattering operator can be used to better spread out samples in image space,
which is important to accelerate convergence of the histogram generation method
that creates the final rendering.

Figure 22 shows a rendering comparison of a kitchen scene rendered by ME and
HSLT, where most of the illumination is due to caustics paths involving a reflection
by the glossy floor. After 30 minutes, the ME rendering is noticeably less converged
and suffers from stripe artifacts, which are not present in the HSLT result.

8 Conclusion

This article presented an overview of the physics underlying light transport simula-
tions in computer graphics. After introducing relevant physical quantities and the
main energy balance equation, we showed how to compute approximate solutions
using a simple Monte Carlo estimator. Following this, we introduced the concept of
path space and examined the relation of path tracing, light tracing, and bidirectional
path tracing—including their behavior given challenging input that causes these
methods to become impracticably slow. The second part of this article reviewed
several MCMC methods that compute path space integrals using proposal distri-
butions defined on sets of light paths. To efficiently explore light paths involving
specular materials, we showed how to implicitly define and locally parameterize
the associated paths using a root-finding iteration. Finally, we reviewed recent work
that aims to generalize this approach to glossy scattering interactions. Most of the
methods that were discussed are implemented in the Mitsuba renderer [9], which is a
research-oriented open source rendering framework.

MCMC methods in rendering still suffer from issues that limit their usefulness in
certain situations. Most importantly, they require an initialization or mutation rule
that provides well distributed seed paths to the perturbations, as they can only explore
connected components of path space. Bidirectional Path Tracing and the Bidirec-
tional Mutation are reasonably effective but run into issues when there are many
disconnected components of path space. This becomes increasingly problematic
as their number increases. Ultimately, as the number of disconnected components
exceeds the number of samples that can be generated, local exploration of path space
becomes ineffective; future algorithms could be designed to attempt exploration only
in sufficiently large path space components.

Furthermore, the all perturbations rules made assumptions about specific path
configurations or material properties, which limits their benefits when rendering
scenes that contain a wide range of material types. To efficiently deal with light paths
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involving arbitrary materials, camera models, and light sources, a fundamentally
different construction will be needed.
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