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Abstract

Hair models for computer graphics consist of many curves repre-
senting individual hair fibers. In current practice these curves are
generated by ad hoc random processes, and in close-up views their
arrangement appears plainly different from real hair. To begin im-
proving this situation, this paper presents a new method for mea-
suring the detailed arrangement of fibers in a hair assembly. Many
macrophotographs with shallow depth of field are taken of a sam-
ple of hair, sweeping the plane of focus through the hair’s volume.
The shallow depth of field helps isolate the fibers and reduces oc-
clusion. Several sweeps are performed with the hair at different ori-
entations, resulting in multiple observations of most of the clearly
visible fibers. The images are filtered to detect the fibers, and the
resulting feature data from all images is used jointly in a hair grow-
ing process to construct smooth curves along the observed fibers.
Finally, additional hairs are generated to fill in the unseen volume
inside the hair. The method is demonstrated on both straight and
wavy hair, with results suitable for realistic close-up renderings.
These models provide the first views we know of into the 3D ar-
rangement of hair fibers in real hair assemblies.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: Hair, 3D scanning

1 Introduction

Rendering human hair involves many challenges. The 3D arrange-
ment of fibers must be specified initially, animated through time,
and rendered with simulations of local and global light scattering.
Great progress has been made on all these fronts, and rendered hair
is now routinely substituted for real footage in visual effects.

But rendered hair still cannot stand up in closeups, and one im-
portant reason is that the appearance of rendered hair depends
strongly on how the fibers are arranged locally. Hair modeling sys-
tems create small-scale detail by applying random perturbations to
fiber shapes, producing arbitrary arrangements of curves that do not
much resemble the structure of real hair. Even with state-of-the art
rendering methods, renderings of these models appear obviously
different from real hair,

Research on modeling hair has primarily focused on the large scale
structure, while research on rendering hair has assumed that fiber-
accurate models will be produced by someone else. Part of the
difficulty in improving the small-scale structure of hair models is
that it’s not known how fibers are arranged in real hair. Photographs
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Figure 1: Our measurement setup consists of a digital still camera
imaging a sample of hair through a macro lens. The hair rotates
around a vertical axis, and the camera translates along its optical
axis, which is perpendicular to the rotation axis.

clearly show that the fiber arrangements in rendered hair are wrong,
but it is difficult to tell how to improve them by looking at images,
in which the geometry mixes with many other confounding factors.

This paper presents a method for capturing the small-scale structure
of hair using large sets of macrophotographs that isolate individual
fibers using shallow depth of field. We demonstrate a system that
individually measures the shapes of hair fibers within a working
volume about 6 cm across, providing new views into the small-scale
structure of hair. Because of the size of the volume, and because the
hair must remain still during a lengthy capture session, it is most
readily applicable to disembodied hair switches. Many hair capture
systems capture full hairstyles on live subjects, but only measure
large-scale structure. Our system is complementary to these, aim-
ing instead to recover accurate geometry on much smaller scales.

Apart from providing models that can be used in ground-truth ver-
ifications of hair rendering algorithms, the resulting datasets also
offer new possibilities for improving the level of realism achieved
by current hair modeling tools. An immediate application is the
study of statistical properties found in the fiber distributions of dif-
ferent hair types, such that better models for randomly generating
hair through existing large-scale structures can be found. Another
application is to use the accurate fine-scale geometry as a source
of detail transferable onto coarse hair models, which provides an
interesting application of example-based hair modeling.

1.1 Method overview

Our measurement setup, diagrammed in Figure 1, consists of a dig-
ital still camera imaging a sample of hair through a macro lens. The
hair is mounted on a turntable, with the rotation axis perpendicular
to the camera’s optical axis. The camera is mounted on a transla-
tion stage, with the translation axis parallel to the optical axis. For
each of several orientations of the turntable, we capture images at
a densely spaced set of camera positions, sweeping the focus plane
through the hair volume.
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Figure 2: Our capture proceeds by taking several sets of photographs, each consisting of a sweep of the camera along the translation stage.
(a) Example images from two sweeps, seeing the same hair rotated to a different angle. (b) Images plotting u against camera position reveal
the 3D locations of hairs. (c) Features located from many sweeps are combined, forming stars that reveal the positions of the fibers.

The resulting images generally have only a few hair fibers in focus,
and we know those fibers are very close to the plane of focus. Sim-
ply by observing a well focused image of a fiber, we know its posi-
tion in 3D space. Two problems with this basic approach are the dif-
ficulty of determining exactly when a fiber is in focus, which leads
to uncertainty in the fibers’ positions in the direction of the trans-
lation axis, and the possibility for occlusion by other fibers. Both
of these problems are alleviated by including translational sweeps
captured with the turntable at a number of different rotations—in
effect, from a number of camera positions spaced around the hair.
Each sweep observes fibers from a different direction, and the ob-
servations of the same point have complementary uncertainties, to-
gether locating the fiber precisely enough to separate it from the
other fibers in the assembly.

In the following sections are a survey of prior work and a more
detailed explanation of the measurement technique, followed by the
details of the data processing pipeline. Finally, we present results
from three hair samples.

2 Prior work

Research on hairstyle generation has primarily focused on gener-
ating appropriate large scale structure under user control. This
large scale structure is encoded as surfaces [Kim and Neumann
2000], guide strands, or wisps [Choe and Ko 2005], often arranged
in multiresolution hierarchies [Kim and Neumann 2002; Bertails
et al. 2003]. The structure is created through direct editing, surface
scans [Sobottka et al. 2006], simulation of guide strands or wisps
as beams [Anjyo et al. 1992; Choe and Ko 2005] or rods [Bertails
et al. 2006], advection through vector fields [Hadap and Magnenat-
Thalmann 2000; Yu 2001], or other means to allow smooth high-
level control over the hair fibers. Ultimately, fibers are generated
randomly to follow the large-scale structure, using sophisticated
statistical distributions [Yu 2001; Choe and Ko 2005] that are tuned
to achieve the desired appearance. Finally, different hairstyles can
be combined through detail transfer operations [Wang et al. 2009].
For a more complete discussion of methods in hairstyle modeling,
please refer to the survey by Ward et al. [2007].

Common to nearly all hair modeling systems is the random gen-
eration of the individual fibers—which are ultimately what is
rendered—by random processes that have little to do with the prop-
erties of real hair. This is true even when the larger-scale structure
is controlled by a physical simulation. We are just beginning to see
simulations that treat the strands individually [Selle et al. 2008],

and achieving realism with such simulations will require physical
models that better reflect the properties of real hair fibers.

To render the fibers once they are generated, much recent work has
focused on developing physically accurate transport simulations for
hair [Moon and Marschner 2006; Moon et al. 2008; Zinke and We-
ber 2007; Zinke et al. 2008]. Moving from ad hoc diffuse compo-
nents to methods accounting for multiple scattering makes a major
improvement in the appearance of light colored hair, but the realism
of the resulting images, particularly in close-ups, is severely limited
by the quality of the fiber geometry. The results of this paper also
aim to provide the first models for which renderings can be com-
pared directly with photographs, to separate the limitations of the
rendering method from the limitations of the model.

There are several existing methods that model hairstyles from pho-
tographs. Grabli et al. [2002] proposed the first technique to re-
cover sparse hair fiber directions from images by using controlled
light sweeps and knowledge of hair fiber scattering profiles. Paris
et al. [2004] improved upon this technique by using more robust
filtering methods and a means for combining results from several
viewpoints. An even more flexible approach was later demonstrated
by Wei et al. [2005] that allowed uncalibrated lighting and camera
positions, and used triangulation rather than inverse lighting to esti-
mate hair directions. And most recently Paris et al. [2008] demon-
strated a system that uses a dome configured with multiple cameras,
lights, and projectors to capture complex hairstyles.

Unfortunately, none of these existing methods is capable of recre-
ating the actual individual strands of the input hair sample. Instead,
their goal is to determine the volume of space filled with hair and
then to grow curves into that space using chaining, hair interpola-
tion, or advection methods. And while image-based rendering tech-
niques can produce good appearance [Paris et al. 2008], it comes
with important limitations compared to having realistic geometry.
Our goal and contribution in this work is the ability to precisely
capture the individual hairs.

Our processing uses two-dimensional Gabor filters, which are simi-
lar to the spatial and spectral sensitivity profiles of cells in the mam-
malian visual cortex [Jones and Palmer 1987]. Their optimal local-
ization in both space and frequency have also made them popular
choices in areas such as texture segmentation [Jain and Farrokhnia
1991] and fingerprint recognition. In our method, we use Gabor
filters to detect local ridge orientations, to which they have success-
fully been applied in the past, for example in fingerprint identifica-
tion [Yang et al. 2003].



Figure 3: After detected features have been rotated into a shared
coordinate system, they form ribbons, whose intersections identifiy
the path of individual hair fibers (1, 2 and 24 angles).

The idea of isolating layers, and “seeing around” occluding ge-
ometry, using a large aperture, is the standard practice in mi-
croscopy [Inoué and Spring 1997; Levoy et al. 2006]. While our
system comes nowhere near microscope-like apertures, being lim-
ited by the relatively large field of view, one could imagine using a
higher magnification and a larger camera format to create an even
shallower depth of field.

Because it uses multiple views, our method bears some resem-
blance both to stereo vision and triangulation scanning, though the
particular methods we use are quite different because we are look-
ing for isolated fibers rather than a smooth surface. In compari-
son to confocal stereo [Hasinoff and Kutulakos 2009], we retain
all camera parameters throughout a measurement, which simplifies
the task of transforming the captured data into a common coordi-
nate frame. We borrow the idea of space carving from the scan-
ning literature [Curless and Levoy 1996]. Another closely related
ranging method is depth from focus [Ens and Lawrence 1993]; in
essence, we use depth from focus to estimate fiber positions to dis-
ambiguate an otherwise hopeless correspondence problem between
widely separated views of very messy geometry.

3 Measurement

Our measurement setup has the sample of hair, in our experiments
a small switch of a few thousand fibers, suspended freely hanging
from a post attached to a motorized turntable. The volume of the
hair is roughly centered on the rotation axis. The camera (Canon
EOS 5D) views the hair from a distance of 330 mm, and rides on a
translation stage that moves the camera parallel to its optical axis.
Illumination comes from a large area source behind the camera,
made from an array of 14 linear fluorescent lamps, that subtends
about 60 degrees horizontally and vertically from the hair. A blue
background is placed behind the hair. There are several motivations
behind the decision to use a large aperture. One advantage is that
few features appear in any given image, making them easier to de-
tect reliably. Furthermore, the shallow depth of field gives a depth
estimate that is invaluable in establishing correspondence in messy
geometry. And finally, the large aperture mitigates the effects of oc-
clusion: because each pixel averages over a roughly 10-degree cone
of rays passing through the focal point, a few hairs passing well in
front of the hair under observation will not occlude it from view.

The key alignments in the system are that the translation and rota-
tion axes are perpendicular, that the projection of the rotation axis
is exactly vertical in the camera’s view, and that the camera’s plane
of focus contains the rotation axis when the translation stage is at
zero. These alignments are readily established by aligning a very
flat reference grid with the rotation axis, then photographing it for
a number of different rotations and translations.

The hair is viewed through a macro lens (Canon 100mm f/2.81)

1We investigated but found no benefit in correcting for geometric distor-

at full aperture, producing an in-focus image of a rectangular area
about 42 by 63 mm in size with an observed depth of field of
1.2mm. The camera has a color sensor 4386 pixels across, but we
use only the red pixels from its Bayer array for feature detection,
to obtain maximum hair brightness and separation from the blue
background, resulting in half-resolution images 2193 pixels across.
This provides 35 pixels/mm at the focus plane, sufficient to clearly
resolve hairs (which are on the order of 100 µm in diameter).

Our measurement consists of sets of photographs, each taken with
the hair at a fixed orientation as the camera makes a sweep along the
translation stage. The camera positions are densely spaced (5/mm)
over a 75 mm range, which is large enough to sweep the focus plane
through the entire hair assembly. The sweep is repeated for 24 ori-
entations of the turntable, so a full dataset comprises 9024 images
(376 camera positions for each of 24 angles). With this setup, we
are able to capture a vertical cylinder of radius 32mm and height
60mm. Larger volumes require sweeps along additional axes or, al-
ternatively, a higher-resolution sensor. We label the sweeps by the
orientation θ of the turntable, and label each image with the dis-
tance d from the center of rotation to the camera’s plane of focus.
For convenience, in this paper we express image coordinates (u, v)
in terms of world distance measured on the focus plane. The pro-
jection of the rotation axis on the image plane is exactly vertical in
the image, and we define its horizontal coordinate as u = 0.

Interpreting the data. We parameterize the hair volume (object
space) with a cartesian coordinate system (x, y, z), where the y
axis is the rotation axis. This coordinate system moves with the
hair as the turntable rotates. For objects in focus, the y coordinate
in object space is always the same as the v coordinate in image
space, because the focus plane is parallel to the rotation axis and
the motion of the camera is perpendicular to that axis.

In each sweep, the plane of focus will pass any point (x, y, z) on
a hair fiber exactly once, at which time the fiber will in principle
appear exactly focused, if it is visible to the camera (Figure 2a). If
we denote the projection of that point in the camera image as (u, v),
and take d to be the camera distance of the image where the point
was most sharply focused, then x and z are related to u and d by a
planar rotation: »

u
d

–
= R(θ)

»
x
z

–
,

whereR(θ) is a counterclockwise rotation through the angle θ. The
geometry underlying these relationships is shown in Figure 2.

In practice, the fiber appears in focus over a short range of camera
positions, so although it is very precisely located (uncertainty less
than 1/10 mm) in the u direction, its position is much more uncer-
tain (uncertainty about 1 mm) in the d direction. Displaying the data
for one row of the camera as an image, with horizontal coordinate
u and vertical coordinate d (Figure 2b), displays the observation of
a fiber as a short streak, reflecting this depth uncertainty.

By integrating observations from several sweeps (Figure 2c) we
have the opportunity to observe each fiber from more than one
direction, thereby tying its position down completely. Coordinat-
ing multiple observations is simple: the (u, v, d) data from each
sweep simply needs to be rotated about the y axis to bring it into
the (x, y, z) coordinate system. In an (x, z) slice, the set of obser-
vations of a point on a fiber will create a star of several intersecting
streaks, and it is by locating these intersections of features that we
extract 3D hairs from the volume.

When fitting 3D curves to our data, it is useful to think in terms
of the whole dataset, rather than considering a slice at a time as

tion or field curvature.
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Figure 4: Overview: A ridge detection stage identifies well-focused hairs in each of the input photographs, after which three-dimensional
fibers are grown through the resulting feature data. To fill in empty areas, occluded regions are identified using a space carving approach
and additional fibers are then advected through an extrapolated velocity field.

Figure 2 does. In the object coordinates, each sweep covers a
rectangular-prism-shaped volume defined by the two axes of the
camera image and the direction of translation. Within this volume,
the set of points where a hair appears focused is a “ribbon” that is
always edge-on to the camera’s view direction. Finding hairs in the
volume amounts to finding sets of intersecting ribbons that are mu-
tually consistent. Figure 6 illustrates this idea, which is central to
the processing algorithm in the following section.

4 Data Processing

To sensitively and reliably fit curves to this data, the two keys to our
approach are (1) to detect features in the images first, which vastly
cuts down the volume of data so that the processing can be done in
memory, and (2) to fit curves directly to the feature data, rather than
building isolated 3D features and chaining them.

Figure 4 shows a high-level overview of data processing. After a
full dataset has been acquired, our processing pipeline takes the
high-resolution photographs and turns them into hair geometry in
the form of finely tesselated line segments. This transformation
proceeds in three stages: at first, each image is passed through a
ridge detection operator, which detects both the location and image-
space 2D orientation of well-focused hairs. The resulting sparse
ridge data is passed to a fiber-growing algorithm that traces hair
fibers in 3D space using observed position and orientation informa-
tion from multiple angles. This step resolves many visible hairs,
but leaves holes in regions where occlusions make detection im-
possible. To produce renderable geometry, we fill in these parts
by growing additional hairs through an extrapolated fiber direction
field. To ensure that these are only added in areas that are empty
due to occlusion, we construct both a visual hull and a space carv-
ing volume to guide their placement. For simplicity, in this section,
we will interpret the hair as being fixed, with the camera rotating to
observe them from different directions.

4.1 Filtering

A typical measurement photograph consists mostly of hairs that are
blurred over a large region due to their distance to the focal plane,
while distinct bright lines indicate the positions of well-focused
hairs. The main task of the filtering stage, then, is to pinpoint the
location of these image-space ridges, while discarding hairs that
are not completely in focus. To discern different hairs, we require
a filter capable of turning ridges into continuous single-pixel wide
features. Additionally, to establish correspondence between differ-
ent photographs later on, good localization is another requirement.

Briefly ignoring that the Canny [1986] operator is in effect an edge
detector, its underlying framework possesses both of these qualities.
We use a modified version of the filter, which finds ridges in addi-
tion to image-space orientation information, while also preserving

the localization and continuity properties.

As is done in the scale-space framework [Lindeberg 1998], we first
convolve the input images with a Gaussian to detect features at a
specific scale. This allows us to tune the filter to respond to features
at roughly the size of a focused hair. Canonical implementations
of the Canny operator then estimate horizontal and vertical image
gradients using a pair of Sobel filter convolutions, after which the
approximate edge orientation of a pixel is given by the arctangent of
their ratio. While generally sufficient for detecting edges or ridges,
the angular accuracy of this approach is too low for our purposes.
Here, orientation information additionally serves as an input to a
later stage of the algorithm, where higher accuracy will help to im-
prove the quality of the reconstruction. It is therefore desirable to
implement a more sophisticated orientation estimator.

A two-dimensional Gabor filter is constructed by modulating an
oriented sinusoidal plane wave by a by a Gaussian envelope. The
real component of an even-symmetric Gabor filter is given by [Jain
and Farrokhnia 1991]:

G(u, v) := exp

„
−1

2

»
ũ2

σ2
u

+
ṽ2

σ2
v

–«
cos

„
2πũ

λ

«
(1)

where

ũ = u cosϕ+ v sinϕ and ṽ = −u sinϕ+ v cosϕ.

The parameters ϕ and λ determine the orientation and period of the
sinusoidal plane wave, respectively, while σu and σv control the
standard deviations of the Gaussian envelope.

We use a bank of 32 identical rotated 7×7 pixel Gabor filters given
by (1) with σu = σv = 1, λ = 3 and orientations ranging from
0◦ to 180◦. Figure 5 shows sample plots of four such filters. Each
photograph is convolved with the whole filter bank and the angle of
maximum response is recorded for every pixel in the image.

In the traditional Canny filter, non-maximum suppression defines
a pixel to be part of an edge if the gradient magnitude assumes a
maximum in the direction normal to the local edge orientation. To
create a ridge detector instead, we simply look for a maximum in
the blurred input image itself: for a pixel with intensity M , let M1

andM2 be the bilinearly interpolated values resulting from a lookup
normal to the local ridge orientation obtained from the Gabor filter.
We create a new image with intensities given by

M ′ :=
M −Mmax

Mmax + c

where Mmax := max{M1,M2} and c is a constant. Hysteresis
thresholding is then applied to this image and the resulting sparse
feature information is retained. This relative peak finder helps to
detect both bright features and hairs receiving very little light due
to shadows. A purely relative threshold will generally suffer from



Figure 5: To detect the image-space orientation of in-focus hairs,
each photograph is convolved with a large filter bank of rotated
Gabor filters. The angle of maximum response serves as a estimate
of the projected fiber direction.

spurious detections caused by noise in dark regions of the image,
and we therefore adjust the the parameter c to reduce this to a min-
imum. To avoid artifacts resulting from camera demosaicing and
range reduction, the filter is applied to the raw Bayer grid values
corresponding to only one of the color channels.

The significant sparseness introduced by the filter is essential to
later stages of the procesing pipeline. By storing only the positions
and ridge orientations of pixels on focused hairs, the entire dataset
of 24 sweeps can from now on be kept in memory.

4.2 Fiber-growing algorithm

Reliably finding hairs in the resulting data is challenging for several
reasons: Despite the filter’s resilience to noise, a certain number
of spurious detections necessitate a robust method that is not un-
duly distracted by contradictory information. Secondly, many hairs
are in contact, and the method has to handle such cases without
generating curves with incorrect topology at the intersection points.
Finally, the significant overlap of ribbons (Figure 3) from hairs in
close proximity could be mistaken for hairs where none are to be
found in the original.

We propose a fiber-growing algorithm that traces hair fibers using
an alternating sequence of least squares iterations. As discussed in
section 3, the path of a hair lies at the common intersection of a
set of intersecting ribbons, each of which corresponds to a partic-
ular observation angle. Given an initial seed point on a hair, the
algorithm estimates the local direction and takes an according step.
Afterwards, a correction is applied to ensure that the new position
still lies at the intersection of the ribbons (Figure 6). Each of these
steps can be formulated as a least squares problem and the process
is repeated on both ends, growing the hair outwards until the ends
are reached or the hair passes out of sight.

The algorithm relies on the ability to query the set of detected fea-
tures in the shared coordinate system described in Section 2. The
particular type of search query used will be to look for observations
contained inside an oriented box. This operation can efficiently be
implemented by storing the feature data inside a kd-tree.

Direction estimation: Given a point x = [x, y, z]T on a fiber fo-
cused from m different camera angles θi1 , . . . , θim with image-
space positions u1, . . . ,um, translations d1, . . . , dm, and 2D fea-
ture orientations o1, . . . ,om, we can use the available information
to deduce the local fiber direction near x. Suppose that the distance
from the camera center to the focal plane is given by l. Using homo-
geneous coordinates and assuming an ideal pinhole camera model,
we have uk = Pk,dk (x) where

Pk,d(x) :=

24 cos θik 0 sin θik 0
0 1 0 0

− sin θik
f

0
cos θik
f

d+l
f

35x (2)

and f is the camera’s focal length. The set of rays parameterized
by P−1

k,dk
{uk +αok} (α ∈ R) sweeps out a plane containing both

Figure 6: Our algorithm iteratively moves along a hair identified
by the common intersection of a set of mutually intersecting rib-
bons. This is done by repeatedly estimating the local fiber direction
and taking a step, after which a correction moves the position back
onto the centerline.

x and the camera at rotation angle θik , and furthermore projects
onto the view plane as a line with orientation ok. Let nk denote the
normal of this plane. In estimating the local hair direction, then, we
are interested in a direction that simultaneously lies in the planes
corresponding to each of the observation angles. However, due to
measurement errors, we can generally only hope to find an approx-
imate answer. The least squares solution to this problem is readily
found using the singular value decomposition and the minimizer g
is given by the m-th right singular vector of [n1, . . . ,nm]T where
the ni are column vectors. The predicted next position is then given
by p̃k+1 := pk + hg, where h is the step size.

Re-centering correction: Based on this minimization, a simple
algorithm might move along a hair by repeatedly solving for a di-
rection, taking a step, and then acquiring updated orientation infor-
mation. The shortcoming of any such approach is that inaccuracies
cause the iteration to drift away from the centerline, at which point
the algorithm cannot reliably solve for a direction anymore. We
require a re-centering mechanism to prevent this from happening.

To move back onto the centerline, we apply a correction perpen-
dicular to the current growth direction (Figure 6). To compute the
appropriate offset, the algorithm starts by searching for hair obser-
vations near the new position. This search is facilitated by introduc-
ing additional knowledge about the shape of ribbons near a point x.

When x is positioned on camera k’s focal plane, a small move-
ment along the translation axis induces a corresponding shift to the
projection of x in image space. In the camera’s local (u, v, d)
coordinate system, this shift can also be interpreted as a vector
s̃k :=[∆uk/∆d,∆vk/∆d,∆d ] describing the slope of a chain of
feature detections extending through several images as the camera
translates back and forth. When rotated into the shared coordinate
system, this vector, together with the local hair direction, spans a
plane that locally contains the ribbon observed by the camera. It is
near this plane that we will search for hair observations. The vec-
tor s̃k is found through differentiation of the camera transformation
with respect to d and is given by:

s̃k =

24−f(x cos θik + z sin θik )/l2

−fy/l2
1

35
After rotating s̃k into the shared coordinate system and constructing
an orthonormal basis {g, sk} of span{g, s̃k}, we have obtained
an orthonormal basis to the plane approximation, which we then



GROW-HAIR()

1 (p0,g0)← GENERATE-SEED()
2 k← 0
3 repeat
4 (o1, . . . ,om)← FIND-ORIENTATIONS(pk,gk)
5 if m < 3
6 break
7 gk+1← SOLVE-DIRECTION(pk,o1, . . . ,om)
8 p̃k+1← pk + hgk+1

9 pk+1← p̃k+1 + SOLVE-CORRECTION(p̃k+1,gk+1)
10 k← k + 1
11 REMOVE-FEATURES(p0, . . . ,pk−1)

Figure 7: By solving an alternating sequence of least squares sys-
tems, the fiber-growing algorithm iteratively steps along the center-
line of a set of intersecting ribbons (Figure 6). The growing process
stops once the number of observations drops below two, and the
hair is subsequently removed to avoid future re-detection.

complete to a full basis {g, sk, tk} of R3. We choose these as the
axes of an oriented box with extents {ag, as, at} centered around
x, which can be used to query for hair observations.

The motivation of this approach is that, on the scale of single steps
taken by the algorithm, a plane approximation is a good model for
the shape of a ribbon, thus providing information on where feature
detections are likely to be found. By restricting the search in this
manner, large amounts of of detections from close-by hairs can be
discarded, which is crucial to the stability of the fitting procedure
described below. This search operation is executed with an appro-
priately chosen box for each camera angle (see Table 1 for parame-
ters), and the resulting features are subsequently projected onto the
two-dimensional subspace g⊥ orthogonal to the growth direction
(Figure 8). Let X,Y denote an orthonormal basis of this space.

When projecting the ribbon approximation span{g, sk} onto g⊥,
it, by definition, maps to a line of orientation [X · sk,Y · sk]T .
Given observations xi seen by the associated camera, we therefore
expect that, for an unknown offset q ∈ R2, their projections will
lie very close to this line (Figure 8), i.e:“

[X Y]T (xi − p̃k+1)− q
”
·
»
−Y · sk
X · sk

–
≈ 0 (3)

Combining observations from several different camera angles, this
results in a large least squares system, which can be solved for q,
e.g. using a QR factorization. The solution denotes the correction
offset perpendicular to g and we then set pk+1 := p̃k+1+[X Y]q.

Finding 2D orientations: After a corrected step has been taken,
the next iteration’s direction fitting procedure requires updated 2D
orientations at the new position. Another set of oriented box queries
is executed around pk+1—this time with a much smaller value of
as (e.g. 0.1mm), which results in observations where the hair was
very close to the focal plane. The orientations of these results are
then averaged separately for each camera angle.

Seed generation: Given a point on a hair, the proposed scheme
can be used to track its path outwards in both directions. However,
a method for finding the starting point is still required: here, we use
a simple heuristic, which rasterizes the three-dimensional volume
of observations into a grid and looks for the cell that records the
highest number of observation angles. If this number is sufficiently
large, we take this as evidence of a hair passing through the cell. To
find its direction, the observed 2D orientations inside the cell are
separately averaged for each camera angle, after which the SVD-

s1

s2

g⊥

p̃k+1

s1

s2

g⊥

p̃k+1

pk+1

Figure 8: A correction step adjusts the position in the plane per-
pendicular to the current growing direction. The offset is chosen
to align hair observations with a model predicting their positions
along a set of lines corresponding to the different camera angles.

based direction computation is applied. Finally, a full correction
step is taken to let the starting position snap onto the centerline.

Rasterizing the entire sparse volume requires excessive amounts of
memory, and we therefore only grow hairs from a smaller cube-
shaped region that iteratively traverses the volume. Whenever the
highest number of observation angles in any of its cells falls below
a certain threshold (4 in our case), the cube advances by one posi-
tion, and the process is stopped after the whole dataset was covered.
This heuristic occasionally produces incorrect seeds, and we there-
fore also check that a hair can be grown for more than a specified
minumum distance of a few centimeters. When this is the case, all
observations used during the fitting process are deleted, thus pre-
venting future re-detection of the same hair.

Enforcing smoothness: To reliably track a hair, we take very small
steps, with h = 0.1mm. Implemented without further precautions,
however, the algorithm frequently produces meandering curves that
skip between hairs. This can happen when, despite the oriented
box queries, significant amounts of noise and observations of other
hairs creep into the described fitting procedures. A simple adap-
tation greatly increases the quality of the output: we make use of
the comparatively low curvature of hair fibers by constraining the
computed growth direction gi+1 to lie in small of cone of directions
of size ω around the previous gi and clamp if necessary. Similarly
we enforce the correction offset to be below an upper bound γ in
magnitude. Our bounds listed in Table 1 are chosen to let hairs
curve freely while damping noise in the fitting process. Another
possibility for further reducing noise is to extend the oriented box
queries to the angular domain: given a pair (pk,gk), their 2D ori-
entation on each camera is easily obtained, and we can also restrict
the search to nearby features in this space. Finally, we allow the al-
gorithm to briefly continue growing a hair as a straight line if there
are less than three observations. In many cases, an interruption of
the ribbons can be bridged this way.

4.3 Generating additional hair

When renderable geometry is desired, it is necessary to fill in re-
gions that cannot be reconstructed due to occlusion. We first build
a voxelized bounding volume of the hair assembly using two sep-
arate methods. Each suffers from certain weaknesses, and their re-
sults are then combined to arrive at a volume of improved quality.

Visual hull: All photographs are taken in front of a bluescreen, and
this provides a convenient way of bounding the space occupied by
the hair assembly. Whenever the color of a pixel in one of the in-
put images contains a sufficient fraction of blue relative to the other
channels, we take this as evidence that a small region around the
corresponding point on the focal plane contains no hair. Note that,
because of the very shallow depth of field, we make no statement
in terms of camera rays, since the assumption of emptyness does



Figure 9: The visual hull obtained using the bluescreen (left) is
useful as a rough bounding shape, but fails to capture geometric
depressions. The space carving volume is more accurate in this
regard, but suffers from many areas incorrectly labeled as occupied.
We combine the two volumes to remove both of these problems.

not necessarily hold true at a distance to the focal plane. After iter-
ating through all images and keeping track of the highest observed
amount of relative blueness in a voxel grid, we obtain a hull whose
isosurface is shown in Figure 9. The weakness of this approach is
that it cannot capture concave regions of the hair assembly.

Space carving volume: Here, feature detections from the filter
stage are taken as evidence that there is little occlusion on the ray
segment connecting them to the camera. All features, along with
camera positions from which they were observed, are transformed
into a shared coordinate system and used to trace rays through
a voxel grid, keeping track of the total number of rays passing
through any cell. An isosurface of the ray counts is shown in Fig-
ure 9. This approach resolves concave parts of the hair assembly,
but fails to cull away many regions of empty space that are not inter-
sected by any rays. To arrive at bounding volume of better overall
quality, we use the visual hull as a stencil to remove incorrectly
classified regions from the space carving volume.

Hair generation: Using an advection scheme, we populate oc-
cluded regions with artificially generated hair. First, average hair
directions are voxelized and extrapolated into empty regions of the
volume. This is done by a component-wise Laplace equation-solve
for the directions, where non-empty cells specify the boundary con-
ditions. To arrive at a smooth transition between reconstructed and
generated hair, we blur a thresholded version of the previously ob-
tained bounding volume. Finally, we sample positions according to
these fractional densities and use the midpoint method to advect the
ends of a new hair strand through the extrapolated velocity field.
Growth is stopped once the fiber exits the scene bounds, and we
then decide whether or not to accept this hair. A good criterion is
the density integrated along the fiber and relative to its length. If this
value is very low, the hair has traveled too far outside of the core,
and is therefore removed. This basic advection scheme generally
produces satisfactory results on simple hairstyles. For other cases,
the method presented by Paris et al. [2008] may be more suitable.

5 Results

Our data processing pipeline, implemented in C++ and Matlab, ran
on a 4-core Intel Core i7 940 workstation with 6 GB of memory.
Processing one capture, which consisted of approximately 100GB
of image data in the camera’s proprietary raw format, entails first
converting all the images to standard formats, running the C++ fea-
ture detection and fiber growing pipeline, and running the Matlab
infill hair generation pipeline. Our unoptimized pipelines ran in
about 12 hours, with equal time spent in the filtering and fiber grow-
ing stages (visual hull, space carving, and infill fiber generation take
negligible additional time).

Figure 10: Reconstructed fibers for the straight hair dataset. The
right image also shows the generated in-fill hairs.

We used three switches of human hair, each roughly 25 cm in over-
all length. The first sample, straight, was medium brown hair,
combed straight. The second sample, wavy, was blond hair, curled
lightly with a curling iron to introduce gentle waves. The third sam-
ple, curls, was dark brown hair, curled more tightly to produce a
complex arrangement of ringlets. In addition to the 9024 measure-
ment images, we also acquired a turntable sequence of 360 well
focused images using a small aperture, for validation.

The final models were rendered using a method based on the work
of Moon et al. [2008] and the scattering model parameters were
chosen to match the photographs. Multiple scattering was only in-
cluded for the blond hair sample. Rendering a single frame took
approximately 20 minutes, on an 8-core Intel Xeon system.

For the straight hairstyle, the reconstructed curves are shown in
Figure 10, both alone and together with the infill fibers. For this
hairstyle we extract a total of 2443 curves, with an average of 1213
curves crossing any given horizontal plane. Near the outside of the
hair, most fibers are complete from top to bottom, and as the hairs
get more occluded towards the inside, we find smaller segments. To
illustrate the fraction of visible fibers that are captured, in Figure 14
we overlay the projections of the recovered curves on the measure-
ment images. The vast majority of fibers that are clearly focused
result in fibers in the model. We added 4000 infill fibers to this
data, and the rendering is shown compared to a turntable image in
Figure 12. (See the supplementary video for the full feature-overlay
sequence and the full turntable comparisons.)

The wavy hairstyle contains many well-aligned fibers that pack
more tightly together, combined with flyaway hairs, and the overall
structure allows some views into the interior. The method contin-
ues to perform well under these conditions, and we extract a total
of 1527 curves, with an average of 789 curves crossing any given
horizontal plane, and produce 4000 additional infill fibers. The
turntable comparison is shown in Figure 13.

In the curls hairstyle, our method reproduces most of the flyaway
hairs, but encounters difficulties in the dense, well-aligned regions.
As the surface bears increasing resemblance of that of a solid object,

Figure 11: In this hairstyle, the high amount of coherence and re-
sulting dense packing presents a difficult case for our algorithm
(Left, photograph; right, reconstruction without infill fibers).



Figure 12: Straight hairstyle: Comparison of the rendered hair geometry obtained using our approach (right) against a reference photograph
shown on the left. Note the accurate reproduction of many image features including flyaway hairs.

Figure 13: Wavy hairstyle: Rendered curves (right) compared against a reference photograph (left). With the high-quality reconstruction,
lighting matched to the capture setup, and a physically-based renderer, we can produce highly realistic results. See the accompanying video
for a more complete comparison.

c ω γ ag as at # Fibers

Straight -140 1.5◦ .5px 40 30 8 1213
Wavy -90 1.5◦ .5px 60 30 8 789
Curls -70 1.5◦ .5px 60 30 8 404

Table 1: Parameters: Filter parameters, smoothness constraints,
and box query sizes in pixels for each of the datasets, along with
the average number of reconstructed fibers per horizontal slice.

individual fibers become harder to track, as they cannot be clearly
resolved separately from one another. Here, approximate methods
such as [Wei et al. 2005] may be better-suited, since they generate
plausible geometry in such regions of high density.

6 Conclusions

Whereas previous work in hair capture has always aimed only to
capture occupancy and a map of local fiber orientations, we have
demonstrated the feasibility of directly capturing the geometry of
a large fraction of the visible fibers in a hairstyle. In contrast to
previous work that randomly generates local structure, our models
have realistic 3D arrangements of fibers, providing the first looks at

the actual geometric behavior of fibers in real hairstyles.

Of course, the small field of view limits the direct practical appli-
cation of our method to capturing hairstyles. Larger and higher
resolution cameras, or many tiled acquisitions using the same type
of camera, would enable our method to be used directly to capture
larger hairstyles. Alternatively, higher quality local structure might
be to use our system to capture examples of local arrangements, and
then use those examples to generate realistic fibers that fit into the
global shape established by existing modeling tools.

The ability to capture fully detailed hair models has significant im-
plications for the development and evaluation of methods for ren-
dering and simulating hairs. It enables comparison to ground truth
images and geometry, which will reveal the limitations of rendering
and simulation methods and spur their further development.
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(a) Input image (b) Gabor filter response (c) Projected curves

Figure 14: To validate our results, we project the recovered curves back onto the input images, discarding segments that are too far away
from the focal plane. The close resemblance to the Gabor filter response shows that most image features result in output curves.
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INOUÉ, S., AND SPRING, K. R. 1997. Video Microscopy: The
Fundamentals, second ed. Plenum Press, New York.

JAIN, A. K., AND FARROKHNIA, F. 1991. Unsupervised texture
segmentation using gabor filters. Patt. Rec. 24, 12, 1167–1186.

JONES, J. P., AND PALMER, L. A. 1987. An evaluation of the two-
dimensional gabor filter model of simple receptive fields in cat
striate cortex. J. of Neurophysiol. 58, 6 (December), 1233–1258.

KIM, T.-Y., AND NEUMANN, U. 2000. A thin shell volume for
modeling human hair. In Computer Animation 2000, 104–111.

KIM, T.-Y., AND NEUMANN, U. 2002. Interactive multiresolution
hair modeling and editing. ACM Trans. Graph. 21, 3, 620–629.

LEVOY, M., NG, R., ADAMS, A., FOOTER, M., AND HOROWITZ,
M. 2006. Light field microscopy. ACM Transactions on Graph-
ics 25, 3 (July), 924–934.

LINDEBERG, T. 1998. Feature Detection with Automatic Scale
Selection. Int. J. Comp. Vis. 30, 2 (November), 79–116.

MOON, J. T., AND MARSCHNER, S. R. 2006. Simulating multiple
scattering in hair using a photon mapping approach. Proceedings
of SIGGRAPH 2006 25, 3, 1067–1074.

MOON, J. T., WALTER, B., AND MARSCHNER, S. 2008. Effi-
cient multiple scattering in hair using spherical harmonics. In
Proceedings of SIGGRAPH 2008, vol. 27, 31.

PARIS, S., BRICE NO, H. M., AND SILLION, F. X. 2004. Capture
of hair geometry from multiple images. ACM Trans. Graph. 23,
3, 712–719.

PARIS, S., CHANG, W., KOZHUSHNYAN, O. I., JAROSZ, W.,
MATUSIK, W., ZWICKER, M., AND DURAND, F. 2008.
Hair photobooth: geometric and photometric acquisition of real
hairstyles. In Proceedings of SIGGRAPH 2008, 30.

SELLE, A., LENTINE, M., AND FEDKIW, R. 2008. A mass spring
model for hair simulation. ACM Trans. Graph. 27, 3 (Aug.), 64.

SOBOTTKA, G., KUSAK, M., AND WEBER, A. 2006. Hairstyle
Construction from Raw Surface Data. In Proceedings of CGIV
2006, IEEE Computer Society, 365–371.

WANG, L., YU, Y., ZHOU, K., AND GUO, B. 2009. Example-
based hair geometry synthesis. In Proceedings of SIGGRAPH
2009, ACM, New York, NY, USA, 1–9.

WARD, K., BERTAILS, F., KIM, T.-Y., MARSCHNER, S. R.,
CANI, M.-P., AND LIN, M. 2007. A survey on hair model-
ing: Styling, simulation, and rendering. IEEE Transactions on
Visualization and Computer Graphics (TVCG) 13, 2, 213–34.

WEI, Y., OFEK, E., QUAN, L., AND SHUM, H.-Y. 2005. Model-
ing hair from multiple views. ACM Trans.Graph. 24, 3, 816–820.

YANG, J., LIU, L., JIANG, T., AND FAN, Y. 2003. A modified
Gabor filter design method for fingerprint image enhancement.
Pattern Recognition Letters 24, 12 (August), 1805–1817.

YU, Y. 2001. Modeling realistic virtual hairstyles. In 9th Pacific
Conference on Computer Graphics and Applications, 295–304.

ZINKE, A., AND WEBER, A. 2007. Light scattering from fil-
aments. IEEE Transactions on Visualization and Computer
Graphics 13, 2, 342–356.

ZINKE, A., YUKSEL, C., WEBER, A., AND KEYSER, J. 2008.
Dual scattering approximation for fast multiple scattering in hair.
ACM Transactions on Graphics 27, 3 (Aug.), 32.


