
Robust Hex-Dominant Mesh Generation using
Field-Guided Polyhedral Agglomeration

Supplement 1

This supplement contains a detailed description of two
key operations used by the operation field optimization

of our method. The first is an efficient technique to search
for the optimal matching for a pair of orientation field

values. The second searches for the smallest rotation to
align an orientation field value to a given direction, which

is needed to realize boundary constraints.

 Xifeng Gao, Wenzel Jakob, Marco Tarini, Daniele Panozzo

1

1. 3D Crosses as Quaternions

We use unit quaternions to internally represent “3D
crosses” sampling the field. This representation is
compact, and allows to efficiently perform all needed
operations.

Notation: here, a quaternion p = pxi+pyj+pzk+pw
is denoted by (px, py, pz, pw), with the real part at the
end.

1.1. The representation

The unit quaternion q defines the rotation going from
the canonical frame to the local frame, whose axis are
the directions of the cross (at a point p).

canonical frame
q−−−−→ local cross

The six directions of the 3D cross are given by rotating
the thee axes of the canonical frame, which are the
imaginary parts of, respectively:

q · (1, 0, 0, 0) · q̄
q · (0, 1, 0, 0) · q̄
q · (0, 0, 1, 0) · q̄

and by their three opposites, i.e. by the 6 vectors:

±((1, 0, 0) + 2(qx, qy, qz)× (qw,+qz,−qy))

±((0, 1, 0) + 2(qx, qy, qz)× (−qz, qw,+qz))

±((0, 0, 1) + 2(qx, qy, qz)× (+qy,−qx, qw))

The represented 3D crosses are, by construction, or-
thonormal.

There is a group of 24 rotations (including the iden-
tity), which map each axis of the canonical frame
over either an axis or its opposite; each of these rota-
tions can be equivalently encoded by two different unit
quaternions (one the opposite of the other); this gives
a set of 48 quaternions which we denote as r1..r48.

If we post-multiply a unit quaternion q by any ri,
then its six directions are just (consistently) permuted,
and so the represented 3D cross does not change:

canonical fr.
ri−−→ permuted axes

q−−→ same loc. cross

1.2.1. Averaging two 3D crosses

In order to blend together two 3D crosses represented
by quaternions p and q, we first find the equivalent
representation q′ of the latter which is closest to p:
i.e., q′ = q · rj for some appropriately chosen j (this
sub-problem is dealt with in the following sections).

Next, we interpolate the two quaternions q′ and p.

Because we are only interested in the (non-
weighted) average, i.e. the half-way interpolation, the
result can be directly computed by simply averaging
of four coefficients q′ and p, then re-normalizing (con-
versely, for generic linear interpolation of quaternions,
a linear interpolation of the coefficients would only
constitute an approximation of the intended result).
Due to the final normalization, we simply sum q′ and
p rather than averaging them.

1.2.2. Enumerating quaternions ri

Let us first enumerate the 48 quaternions r1..r48. It
will be useful to divide them into 3 classes (of 8, 24,
and 16 elements), according to the number of zeros:

(±1, 0, 0, 0)
(0, ±1, 0, 0)
(0, 0, ±1, 0)

(0, 0, 0, ±1)← ide

 class A (4× 2)

(0, ±1, ±1, 0) /
√

2

(±1, 0, ±1, 0) /
√

2

(±1, ±1, 0, 0) /
√

2

(±1, 0, 0, ±1) /
√

2

(0, ±1, 0, ±1) /
√

2

(0, 0, ±1, ±1) /
√

2


class B (6× 4)

(±1, ±1, ±1, ±1) / 2
}

class C (1× 16)

Note that to multiply any q = (qx, qy, qz, qw) with the
elements of class A simply means to permute and/or
flip its coordinates (a single “swizzle” op on GPU).
Specifically, we will denote with q1..q4 the permuta-
tion/flipping given by multiplying with the four posi-
tive elements of class A:

q1 = q · (1, 0, 0, 0) = (qw,+qz,−qy,−qx)

q2 = q · (0, 1, 0, 0) = (−qz, qw,+qx,−qy)

q3 = q · (0, 0, 1, 0) = (+qy,−qx, qw,−qz)

q4 = q · (0, 0, 0, 1) = (+qx,+qy,+qz, qw)

To multiply with any other ri, means to sum the qi

corresponding to its non zero entries, flipped when the
entry is -1; then, for class B or C, divide by

√
2 or by

2 respectively. E.g.:

q · (+1, 0,−1, 0)/
√

2 = (q1 − q3)/
√

2,

and so on.

(recall q · ri encodes the rotation encoded ri followed
by the rotation encoded by q). Therefore, for any given
3D cross, we have exactly 48 distinct but equivalent

representations q · r1 . . . q · r48.

1.2. The operations

All needed operations over 3D crosses can be per-
formed efficiently with this representation.

2

1.2.3. Picking the closest representation

Given two 3D crosses represented by quaternions p
and q, we want to find ri, i ∈ 1, ..., 48 which minimizes
||p− q · ri||2, the distance between p and q · ri.

One solution would be to try each of the 48 pos-
sibilities, and pick the one minimizing the distance
function above; however, we use a much quicker way.

Recall that minimizing the distance between any
two unit quaternions a and b is equivalent to max-
imize their dot product < a ,b > (the dot product
of the corresponding 4 dimensional vectors; note: it is
not the quaternion multiplication), because:

||a− b||2 =

(a− b) · (ā− b̄) =

||a||2 + ||b||2 − 2 < a ,b >=

2 (1− < a ,b >)

Let the scalars a1..a4 be the absolute values of dot
products of qi with p and s1..s4 their sign (si = +1
or −1):

ai = | < qi ,p > |
si = sign(< qi ,p >)

Let M and N be the indices of the largest and sec-
ond largest ai, that is, aM ≥ aN ≥ ak 6=M,N

We choose rotation ri according to which one of
three scalar values vA,vB ,vC is larger:

vA = aM

vB = (aM + aN)/
√

2

vC = (a1 + a2 + a3 + a4)/2

• if vA is larger: pick the rotation (in class A) with sM
as the single non-zero component at position M ;
• if vB is larger: pick the rotation (in class B) with sM

and sN (over
√

2) as the two non-zero components
at position M and N ;
• if vC is larger: pick the rotation (in class C) given

by (s1, s2, s3, s4)/2.

Soundness: the choice of rotation ri maximizes
d =< p , q · ri >, as required. Sketch of proof: the
tested value for each case (vA,vB ,vC) is the value of d
for the corresponding choice of ri. Moreover, as it is
easy to check, in each of the three cases, the choice of
ri for that case dominates over any alternative in the
same class.

Efficiency: the method requires only four dot prod-
ucts, to find ai, and a single GPU operation to find all
si. Identification of M,N takes 4 comparisons, and 2
more are needed to identify the largest of three tested
values: therefore we are choosing among 48 possibili-
ties with a total of 6 comparisons.

1.2.4. Aligning a 3D cross to a normal

A 3D cross represented by q which is sampled on the
object boundary must be rotated by the least possi-
ble amount so that one of its six directions matches
the local object surface normal ~n = (nx, ny, nz). To
efficiently do so, we first map back ~n into canonical
space, using the inverse rotation q̄:

local cross
q̄−−−−→ canonical frame

Let ~n′ = (n′
x, n

′
y, n

′
z) be the normal expressed in

canonical frame, i.e. the imaginary part of

q̄ · (nx, ny, nz, 0) · q.

Next, we need to identify the smallest rotation s
which aligns an axis, or a negated axis, of the canoni-
cal frame to ~n′. Clearly, we must choose the axis cor-
responding to the coordinate of ~n′ which is largest in
module, negated if that coordinate is negative. Finally,
the aligned 3D cross is simply found as q ·s, This way,
the chosen canonical axis is mapped first, by s, into ~n′

and then, by q, into ~n, as we wanted:

a canonical axis
s−−−→ ~n′ q−−−→ ~n

We note that a rotation s′ of exactly twice the re-
quired angle for s is found by simply swizzling the co-
ordinates of ~n′. Specifically, depending on the chosen
axis (but independently from its sign), we have:

s′ =


(0, +n′

z, −n′
y, n′

x) if axis = ±X
(−n′

z, 0, +n′
x, n′

y) if axis = ±Y
(+n′

y, −n′
x, 0, n′

z) if axis = ±Z

Proof (sketch): call ~c the chosen canonical axis; let
α be the angle from ~c to ~n′, and ~r be the unit vector
orthogonal to both. Then s is the rotation of angle
α around a line defined by ~r. When ~c is a positive
canonical axis, it is easy to check that the imaginary
part of s′ is ~n′ × ~c, which is sin(α) · ~r, and its real
part is < ~n′ ,~c >= cos(α). Therefore, s′ rotates by
2α around ~r. When ~c is a negative canonical axis, the
sign of both real and imaginary part of s′ are flipped,
and the rotation does not change.

To halve the angle of s′ and thus find s, we sim-
ply average s′ with either quaternion representing the
identity rotation, (0, 0, 0,±1), chosen in accordance to
the sign of the real part of s′ (then renormalize). This
is sound because the interpolation is half-way, and the
rotation amplitude is necessarily < π/2.

The division by 2 of the averaging can be omitted
due to the final normalization. In total, up to a renor-
malization, we have:

s = (s′x, s
′
y, s

′
z, sign(s′w) + s′w)

where sign(x) is the sign of x (+1 or -1).

